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1. Abstract

One of the proposed selective forces for the evolution of dispersal, the opposition between
temporal and spatial variation, seems to accumulate considerable empirical and theoretical sup-
port: slower dispersers are selected in more heterogeneous environments, since colonizing other
sites imposes higher risk of ending up on lower quality space; while faster dispersers are fitter in
larger population fluctuations by escaping highly competitive sites and colonizing emptier, less
competitive ones. While most of the theoretical models studying this opposition are based on
the metapopulation framework, a test of the importance of this selective force under a different
modeling scheme would be welcome. We adopt a model of point-like individuals in a resource
homogeneous domain, where spatial variation arises in a self-organizing manner because of the
neighborhood density dependence of the demographic rates. Initially, we distinguish two model
demographic parameters which might affect temporal and spatial variation, and we organize
numerical evolutionary experiments. We manage to replicate previous, pairwise species com-
petitions’ results of the model, where the superiority of slower dispersers was exhibited, at this
time with the different approach of simulating population evolution under an eco-evolutionary
setting. By experimenting and measuring spatial and temporal variation, as they were manip-
ulated by the two demographic parameters, we observe the redirection of selection from one
extreme of mobility to the other. Specifically, we find that increased competition intensity and
competition-mediated death rates result in higher temporal in respect to spatial variation, which
by their turn result to the selection of higher mobility. The incorporation of the modern scheme
of eco-evolutionary feedback helped greatly in the explanation of the evolutionary outcomes. In
conclusion, this study confirmed from a different modeling view, in which spatial and temporal
variation were not imposed explicitly and externally, the importance of the opposition between
temporal and spatial variation for the evolution of dispersal.



2. Introduction

2.1. Terminology of ecological movement

A search in the ecological literature reveals different terms for various aspects of the move-
ment of biological organisms, and some basic information about their possible roots and their
meaning might prove useful at the beginning. Some of the most popular terms are ’disper-
sal’, "foraging’, and ’migration’. A main responsible of such a separateness seems to be the
metapopulation conceptualization of the ecological systems, which categorizes space as habi-
tat or non-habitat (Hawkes, 2009). Specifically, the ecological chessboard, according to this
paradigm, consists of discrete *oases’ of appropriate habitat laid on an unfriendly ’desert’. The
dynamics occur at two inter-linked levels: the population level, where each patch may host a
population; and the metapopulation level where individuals leave their patches, move across the
non-hostile terrain, and enter other patches. Dispersal, according to its traditional notion, refers
to the movement of the offspring away from the parental neighborhood, principally to a different
habitat patch. Foraging is used to describe small-scale search movements inside a patch. And
migration is left for the seasonal movements between wintering and breeding sites.

While these definitions seem clear, it is recognized that, due to high variation across species,
the non-discrete temporal nature of the organism life history, and the frequent inability of a clear
delineation of a habitat patch, their definition becomes less strict and narrow (Hawkes, 2009).
For example, the narrow meaning of dispersal has been expanded to incorporate any patch-to-
patch trans-location. Still, though, after this expansion these terms step on valid grounds as long
as there are borders, even blurred, between disciplines. For example, a behavioral biologist’s
focus probably would not be dispersal, but she/he would care about the foraging behavior of
individuals around the nest; while a macroecologist would ignore the small-scale spatial patterns
of individuals, focusing instead on how, for example, the abiotic environmental gradients in com-
bination with dispersal determine species distribution. Moreover, while you can discuss about,
e.g., the foraging spatial pattern of a single individual, you cannot study an isolated individual’s
dispersal. There is no meaning of an individual dispersing if there are no other individuals in its
world. Dispersal has ecological roots and implications, implicitly or explicitly considered. It is a
population- (and above) level process, which at least implicitly takes into account the knowledge
of the location of other individuals.

After this terminological discussion, it is convenient to specify in which way the terms re-
garding movement were used in this text. As previous works have done, this thesis, a theoretical
work with a clearly ecological orientation, uses the term ’dispersal’ and *mobility’ to refer loosely
to the movement and mobility of individuals in the ecological system. Additionally, it is conve-
nient to use the terms ’diffusion’ and ’diffusivity’, to discuss about the movement of individuals,
following the terminology of previous works upon which this one is based. As it can be under-
stood, the aforementioned terms will be used rather interchangeably, and their meaning will be
generally context-dependent.

2.2. Complexity in the ecology and evolution of movement

Ecological systems could be considered typical examples of complex systems. They are
realized in multiple, inter-linked hierarchical levels. From lower to higher hierarchical levels, we
find: the individual, population, metapopulation, community, biome, until the whole biosphere
level. As complex systems, a level is characterized by patterns and behaviors which emerge
because of the interaction between its below level constituent entities. Additionally, the entities of
a level do not exhibit the characteristic patterns and behaviors of the above level they constitute.
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The kinds of complexity that can be found in ecological systems are at least six (Loehle, 2004):
structural, process, behavioral, geometric, spatial and temporal. Structural refers to the structure
of the ecological interactions (like trophic interactions), process refers to multi-step processes
(like soil formation), behavioral refers to the complexity of individual behavior (like animal
foraging), geometric refers to the geometry of ecological objects (like a three-dimensional forest
canopy), spatial refers to spatial patterns of distributions (like vegetation patterns), and temporal
refers to temporal dynamics (like population fluctuations).

The last two of the listed kinds of ecological complexity, spatial and temporal, seem to have
received greater attention, possibly because of their easily observed results and their practical
applications. For example, once homogeneous habitats are transformed into spatially complex
landscapes of fragmented habitats, mainly due to anthropogenic disturbance. The visually ob-
vious fragmentation patterns, and the practical urgency for wildlife population conservation,
encourages the study of such fragmented ecological systems. To this end, metapopulation mod-
els are usually being adopted, in which the interplay between population dynamics and spatial
patterns is studied. One of the key processes for the viability of the populations in the metapop-
ulation framework has been found to be dispersal. And it has been shown that the complex
interplay between dispersal and the frequency of local extinction emerges not only because of
the feedback between spatial and temporal dynamics, but also because of the feedback between
spatiotemporal dynamics and dispersal evolution (Ronce and Olivieri, 2004). Hence, a holistic
study of dispersal has to take into account the 3-part complex dialogue between spatial dynamics,
temporal dynamics, and the evolution of dispersal.

2.3. Dispersal and evolution

The presence of dispersal is ubiquitous in nature. Even the fact that two individuals cannot
exist on the same point in space, forces them to disperse passively. But here we care about adap-
tations, and even then it is fruitless to look for a species whose genes are not able to expand their
spatial distribution, either alone or with the help of the environment, in an individual’s lifetime
or during subsequent generations. Even sessile species, for example think of a typical terrestrial
plant species, ’attempt’ to colonize available and appropriate habitat by a wide variety of adap-
tations: the vegetative growth with stolons; the wonderful adaptations of the air, water (and even
fire-induced) traveling seeds; or the mutually beneficial *friendships’ with fruit-eating animals.
The adaptive advantage of slower or faster dispersal goes beyond colonization (Dieckmann et al.,
1999; Ronce, 2007): decrease in extinction risk; less competition between relatives; foraging for
food, mating or other resources; avoidance of intraspecific and interspecific competitors (include
predators to the latter); decrease in the genetic inbreeding (for the sexually reproducing popula-
tions); or exploitation of the spatial and temporal environmental variability. The magnitude of
this adaptive armory points to at least two obvious, but worth-recalling remarks: (i) dispersal is
heritable (for a study case in butterflies, see|Saastamoinen, 2008)); (ii) and it is the target of natu-
ral, anthropogenic or other kinds of selection Ronce (2007). Thus, dispersal, a principal feature
of life, is shaped under various selective forces.

Since dispersal steps with one foot on ecology and with the other on evolution, an interesting
approach for the study of its character, nature and dynamics comes under an eco-evolutionary
setting. Evidence are accumulating to show that the dialogue between ecology and evolution can
take place extremely fast (Carroll et al., 2007), putting to a more suspicious position the old, strict
view of discriminating the ecological from the evolutionary time-scales and processes. Thus,
focusing on the interplay between ecological and evolutionary dynamics of dispersal seems a
promising path. And, this thesis is grounded exactly on that, studying under an eco-evolutionary
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setting the evolution of dispersal, and specifically the last of the previous paragraph’s list of
adaptive advantages of dispersal: the spatial and temporal conditions under which faster or slower
dispersal may be selected in an ecological system.

2.4. Spatiotemporal variation and evolution of dispersal

If we search in nature for the extremes of mobility and evolutionary change, we can isolate
the two aforementioned forces, spatial and temporal variation, to be at play. On one hand, it
seems that slow dispersal may be favored in well-isolated habitats, and hence highly variable
in space environments. Take the example of flightless birds, like the New Zealand native kiwis
(Apteryx australis), on oceanic islands. The loss of the ability to fly has independently evolved
several times on oceanic islands, and it seems to have happened in not many generations (Mc-
Nab, 1994). The reduction in dispersal on such isolated habitats has been observed in plants as
well: evolution towards reduced seed dispersal in wind-dispersed short-living weedy plants on
the timescale of decades has been shown on inshore islands in British Columbia (Cody and Over-
ton, 1996). On the other hand, the inefficiency of slow dispersing species to withstand, escape or
exploit temporally increased or fluctuating competitive, predatory or other environmental pres-
sure is obvious. On the example of the oceanic birds, according to the fossil record, the largest
extinction event in the Holocene occurred in the Pacific islands upon human colonization: more
than 1,000 bird species, many of them flightless, went extinct due to anthropogenic hunting and
habitat loss (Duncan et al., 2013). And, with an example from plants, the species composition
was found to be different in soil-disturbed or grazed plots compared to undisturbed ones: more
mobile species, reproducing with seeds dispersed by the wind, were occupying disturbed sites;
while undisturbed sites were composed mainly by less mobile species, which were reproducing
vegetatively (Mclntyre et al., 1995)). The authors suggested that the ability to colonize open space
created after a disturbance event, like heavy grazing, must be favored in such fluctuating envi-
ronments. In general, it is thought that on one hand spatial variation selects for slower dispersal,
and on the other hand faster dispersal is preferable under higher temporal variation, with both of
the forces likely acting rapidly in a continuous eco-evolutionary dialogue.

There is a growing body of theoretical literature, concerning the evolution of dispersal rates,
which seems to reach to an agreement both in between the theoretical and the empirical studies.
On one hand, results have shown that slower dispersers dominate in heterogeneous space (e.g.,
Hastings, 1983; |Dockery et al., 1998; Hutson et al., 2003)). With a deterministic, continuous in
population size and space model of two competing species in a heterogeneous spatial environ-
ment, |[Hastings (1983)) found that the slowest dispersing species wins. |[Dockery et al. (1998)), with
the same model, generalized the superiority of slower dispersal in heterogeneous environments
beyond two-species competition. On the other hand, studies accumulate to argue for the com-
petitive advantage of faster dispersal under high enough temporal variation (e.g., Hutson et al.,
2001} Baskett et al., 2007). The common feature of those studies, in contrast to the determin-
istic aforementioned model, is the incorporation of population-level stochasticity. For example,
Kessler and Sander (2009) illustrated a regime shift towards faster dispersal when the population
sizes are sufficiently small. Subsequently, [Waddell et al. (2010), with a similar model, reached
at the same conclusions for the analytically convenient extremes of dispersal rates, underlining
the contribution of demographic stochasticity to the outcome of the competition between species
with different dispersal rates. All in all, from both the theoretical and the empirical literature,
it seems that spatial and temporal variability are two opposing forces that determine the evolu-
tionary stable dispersal rate under competition: slower dispersers are selected in more spatially
heterogeneous environments since colonizing other sites imposes higher risk of ending up on

6



lower quality space, while faster dispersers are fitter in larger population fluctuations by escap-
ing highly competitive sites and colonizing emptier, less competitive ones.

2.5. Present study

A welcome confirmation of the idea of competition between spatial and temporal variation
could come from the study of models with different setting than the usual one. Most of the models
used for the evolution of dispersal are patch-based, inspired by the metapopulation framework.
They incorporate explicitly an independent variable for the degree of environmental heterogene-
ity, e.g., as [Waddell et al. (2010) did by tweaking the variance of the patch carrying capacity.
But spatial heterogeneity without the incorporation of habitat patches is able to arise in a self-
organizing manner, by means of aggregated individuals: Hernandez-Garcia and Lopez (2004)
presented the periodic clustering of individuals with a model in which individuals randomly dif-
fuse, and replicate and die influenced by the local density of neighbors. In a later work, Heinsalu
et al. (2013)) investigated the outcome of competition between pairs of pattern-forming species
differing only in their movement characteristics. They concluded that the species which forms
narrower clusters out-competes the other. This finding can be interpreted as additional evidence
for the advantage of slower dispersers in heterogeneous environments, and as a promising way
to confirm, or reject, in a different modeling setting the contribution of temporal variability.

Inspired by the aforementioned importance of the eco-evolutionary dynamics for the study
of ecological systems, and the importance of temporal variation on the evolution of dispersal,
this work aimed at two points: (i) To complement the paired, two-species competition setting
of Heinsalu et al. (2013)), in which they were starting the competitions with equal numbers of
individuals. The eco-evolutionary approach the present study followed was a ’simulating real
evolution” scheme. This scheme mimics real population evolution, with mutations occurring at
reproduction, and letting the system evolve to a possibly existent evolutionary stability. Here, the
previous setting of the two competing species was relaxed, and individuals from a continuous
range of mobility were allowed to compete. (ii) To investigate the opposition between spatial
and temporal variation under the eco-evolutionary setting, and its subsequent contribution to the
evolution of mobility.

The two aims of the thesis were achieved by confirming, under the eco-evolutionary setting of
simulating evolution: (i) that slower dispersers proved superior, for the parameter values consid-
ered by|Heinsalu et al. (2013)); (ii) that the opposition between temporal and spatial variation was
a considerable force of selection in the evolution of dispersal from this model’s different perspec-
tive. The rest of the thesis is structured as follows. Initially, an overview of the model mechanics
and basic behavior will be given (Section "Modell’). Next, Section "[Basics of spatiotemporal|
[variation]” deals with an attempt to identify model input parameters by which spatiotemporal
variation can be manipulated. Following, Section *{Evolution of dispersal]” presents evolutionary
experiments. There, by measuring spatiotemporal variation, we will be able to interpret the evo-
Iutionary outcomes from the simulations of evolution in terms of the measured spatiotemporal
variation, and eco-evolutionary feedback. Finally, the thesis will close with brief conclusions,
comments and future perspectives, in Section *|Concluding remarks|’.




3. Model

In this Section, an overview of the model mechanics will be given, as well as a brief descrip-
tion of the main characteristics of its behavior.

3.1. General setting

The model of |[Heinsalu et al. (2012) conceives a population of individuals existing in a two-
dimensional, resource homogeneous, square world of size L x L with periodic boundary condi-
tions. The point-like individuals are allowed to move, reproduce asexually by fission, and die.
Reproductive correlations exist, since upon birth the newborn individual is placed at the parental
position. An offspring inherits the movement and demographic characteristics of its parent. The
version of the model used here is the one of non-local interaction. According to that, an individ-
ual’s birth rate may have a linear negative relation, and its death rate a linear positive relation,
with the number of other individuals within radius R.

Heinsalu et al. (2013)) implemented both a mean-field and an individual-based version of the
model, and since here we care about temporal fluctuations, we will focus on the latter, which
uses the Gillespie algorithm, described for the specific model in Heinsalu et al. (2012) and in
Section ’|Gillespie algorithm|” herein. We will follow the population size, N(f), in continuous
time ¢, starting each simulation with N(0) individuals uniformly distributed in a square domain
of L = 1, so that the units of length can be interpreted in terms of system size.

3.2. Demography

An individual i reproduces and dies according to Poisson processes with rates r;; and r;,
respectively. The linear effect of competition on these rates depends on the number of other
individuals, N;é, the individual i has in distance less than R around it:

max(0, rpo — ch,iQ),

1 = rq0 + BNj, (3.1

i
Ty

where rpo and ry are the intrinsic reproduction and death rates, and @« > 0, 8 > 0 are the
parameters introducing the competition. The radius R < L/2, so that no neighbor is counted
more than once because of the periodic boundaries. The max function ensures that the birth rates
do not become negative.

So, the five input parameters for the competition-mediated demography are ry, 40, @, 8 and
R.

3.3. Gillespie algorithm

On each simulation step, the following set of actions are accomplished, in effect of increasing
or decreasing N by one (Heinsalu et al., 2012): (i) calculate the time to the next step; (ii) choose
if the demographic event of the step will be a birth or a death; (iii) select the individual which
will realize this event; (iv) execute the event; and (v) move all individuals. The simulation ends
either when the time ¢ of a step’s occurrence exceeds a specified time ¢,,4, or after a specified
number of simulation steps.

Since the demographic events follow Poisson processes, the time 7 to the next step is sampled
from an exponential distribution with parameter

N N
Riot = Bior + Dyoy = Z I’Z + Z pr (3.2)

i=1 i=1
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the sum of the birth and death rates of all individuals (Heinsalu et al., 2012)). By taking the inverse
of the cumulative distribution function of the exponential distribution, we get 7 = —In(u)/R,y,
where u is a pseudo-random number drawn from a uniform real distribution in the interval (0, 1).
With probability By, /R, the event is reproduction, or else a death will occur. The probability of
choosing a particular individual for the specific event is proportional to the individual’s contribu-
tion to the total of individual rates for that event. For example, if a death is chosen to happen, an
individual with higher death rate (i.e., with more neighbors) is more probable to be selected. A
death leads to the disappearance of the individual, while a birth means the addition of a new in-
dividual on the same spot as the parent, inheriting the parent’s characteristics, as was previously
mentioned. Finally, all individuals move randomly as it is explained in Section "Movement]".

3.4. Movement

For the movement action, the direction of the next jump was randomly chosen from (0, 27).
The individuals were jumping a distance / to that direction drawn from the Lévy-type probability
density function:

G (D) ~ I, (3.3)

where the space-scale parameter [ < [, and y is the anomalous exponent controlling the prob-
ability of long jumps. The smaller the value of y, the more anomalous is the diffusion. For
u € (0,2), the variance of is divergent, but for 4 > 2, the central limit theorem ensures that
the distribution of step lengths approaches a Gaussian, at long times. From (3.3), the step lengths
were randomly generated by (Heinsalu et al., 2012):

Y|
[y (3.4)

bliu
where u is again a uniformly distributed pseudo-random number in the unit interval, and b adjusts
the tail of the distribution in respect to p. According to [Heinsalu et al. (2012), and references
therein, b = [I'(1 — u/2)I'(/2)]/T'(w) in (3.4) was chosen therein such as to agree with previous
works. In our case, since our focus was the interval ¢ € [1,5] which would be continuously
visited due to mutations, and for y = 2 a gamma function in b diverges, we decided touse b = 1,
without any serious change in the results.

To determine [ in , we start with the case of step lengths drawn from a Gaussian dis-
tribution with standard deviation [ = v2«/{1), where a diffusion coefficient « is defined, and
() = R,‘ol, (Heinsalu et al., 2012). Then, for the Lévy distributed step lengths from 1i even
though the variance is infinite, a generalized anomalous diffusion coefficient «,, can be defined in
terms of the space-scale parameter

= i (t)'"™ = 2/ Rior) ™. (3.5)

In conclusion, this study used (3.4) for the generation of step lengths (with b = 1), where the
space-scale parameter was taken from (3.5). So, the movement input parameters were &, and .

3.5. Basic behavior

One of the characteristic behaviors of this model, as it was already mentioned, is the self-
organized pattern formation. Under suitable parameter values, individuals are met mainly in
clusters (Figure 3.1 a and b). [Herndndez-Garcia et al. (in press) have shown that the distance
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¢ between the clusters is R < ¢ < 2R, and the clusters are arranged periodically in a hexago-
nal pattern (Figure [3.1]a and b). The main reason for this aggregation is attributed to non-local
competition, and an extreme example will illustrate the formation of the pattern because of the
instability of the homogeneous spatial configuration. Let us imagine an immobile individual in
a homogeneous spatial configuration of an immobile population at equilibrium density. Let us
consider additionally that the individual lies between two small areas whose distance from it
is less than R, the distance between them is more than R, and their density due to fluctuations
increases. Then, our individual will receive higher competitive pressure than the individuals in
those two areas. The area where our individual lies will get less dense due to harsher competi-
tion, and the density on the two areas will increase further because of the decrease in density in
between the two areas’ space. This positive feedback loop will end with no individuals in be-
tween the two areas (the so-called ’death-zone’), and with the two areas becoming local density
maxima, i.e., clusters. If we relax the immobility assumption in the example, then the movement
of individuals will tend to diffuse away the inhomogeneities created by competition. Thus, the
essential mechanism for the explanation of the observed model behavior brings forth the oppo-
sition between competition-mediated increase in clustering and mobility-mediated decrease in it
(Heinsalu et al., 2012)). |Heinsalu et al. (2012)) showed that by decreasing «,, or y, the linear width
of the clusters becomes smaller, the particle density in the clusters higher, the density between
the clusters lower, the number of clusters larger, and the average number of individuals increases
in consequence (Figures 8, 9, 10 therein; Figure @]herein). Thus, for increasing values of the
movement input parameters, u or ,,, we pass from more to less clustered spatial configurations.
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Figure 3.1: Spatial configurations of individuals (black dots) for 3 values of the movement pa-
rameter u. (a) u = 1; (b) u = 1.3; (¢c) u = 3. Other, common-valued parameters: «, = 1074,
R =0.1,r9 =1,1r50 =01, = 0,5 = 0.02, NO) = 1000. The snapshots were taken at
simulation times ¢ = 5000, ¢t = 1000 and ¢ = 500, for (a), (b) and (c), respectively.

As a final but important remark, it is crucial to realize that in this study we care about the
evolution of movement strategies in respect to mobility, and not in respect to movement types.
We would care about the evolution of movement types if we track the evolutionary change in u
and this could correspond to an evolutionary change in the range of movement types: from the
ballistic (u — 0), to the Lévy-like (0 < u < 2), to the Brownian-like movement type (u > 2).
But, by adopting the specific model, with step lengths generated according to (3.4) and (3.3) as
it is described in Section [Movement]’, it seems that lower u does not mean more anomalous
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diffusion with more frequent, longer jumps (Figure [3.2). Since the generated step lengths /,
during simulations with the Gillespie algorithm for different u values, showed a general increase
in [ with u (Figure[3.2)), we could follow the evolution of mobility by enabling mutations on 4, and
by mainly keeping k, fixed. The parameter value set in Figure |32| was one of the two typically
used settings of the present study (weak competition), and the same qualitative trend arose for
the parameter value set of the second setting (strong competition), in similar results not shown
here. In conclusion, in the present study, the focal parameter by which an evolutionary change in
mobility will be implied is y, and we will ignore the insignificant differences between movement
types arising by the change in that parameter: larger u, hereon, will mean faster dispersal.

0.6
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Figure 3.2: Box-and-whisker charts of step lengths / in respect to u. Black and gray dots represent
outliers and far outliers, respectively. Black dashes denote the fences, while light gray longer
dashes denote the lower-upper quartiles (barely visible, close to zero). For each u, 25 - 10*
step lengths were taken according to (3.4) and (3:5) as it is described in Section "Movement]’,
during the simulation of an equilibrium population with the Gillespie algorithm. Parameters:
K, =107 R = 0.1, rp0 = 1, 740 = 0.1, @ = 0.02, B = 0, N(0) = 1000.

3.6. Summary of parameters

Essentially, the model incorporates the following groups of input parameters (apart from
the spatial and temporal background): five responsible for the demography (Table 3.1} the first
five parameters), two combinations of demographic parameters which will be our main focus
(Table[3.1] the following two parameters, between the dashed lines), and two responsible for the
movement (Table[3.1] the last two parameters). When we consider the evolution of mobility, one
of the two movement parameters essentially changes from an input parameter to a dependent
variable.
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Table 3.1: Model parameters

Parameter Symbol
Intrinsic birth rate b0
Intrinsic death rate r40
Effect of density-dependence on birth rates a
Effect of density-dependence on death rates B
Neighborhood extend R
7777777 Competition intensity ~ y=a+f8
Competition’s contribution to the death rates ¢ = 8/y
T Lévyindex v
Diffusion coefficient Ky
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4. Basics of spatiotemporal variation

This Section aims to: (i) provide the definitions of temporal and spatial variation which will
be adopted in the present study; and (ii) retrieve from literature, and investigate possible ways to
affect the two types of variation, in terms of model input parameters.

4.1. Temporal variation

We will call temporal variation the variability in the neighborhood density N, in time. To
illustrate this, we can take the extreme example of an immobile individual. This individual feels a
temporal change in the competitive pressure. After each simulation step, individuals have entered
and left its sensing zone of radius R, either because of demography or because of movement. We
could say that temporal variation is the variation in N, ;é during time on a fixed location.
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Figure 4.1: Imaginary examples of temporal change in the neighborhood density N, of an in-
dividual i. In both Panels, the black and gray lines represent higher and lower, respectively,
temporal variation in Nzie among simulation steps. (a) Smaller mean and variance in the number
of steps per time interval. (b) Larger mean and variance in the number of steps per time interval.

Before going further, we must point out that temporal variation seems to have two compo-
nents. Imagine an immobile individual of an equilibrium population, sensing the competitive
pressure in terms of its neighborhood density Nzir After a simulation step, during which a demo-
graphic event and the movement of all individuals take place, N, might change. One component
of variation, then, is the variation in N, among steps (compare the black with the gray line in each
Panel of Figure d.I). The gray line represents lower among steps variation, while the black line
represents higher. On the other hand, the number of steps per time interval is not fixed. Thus,
the other component of temporal variation would be in terms of the mean and variance of the
number of steps per time interval (compare Figure [4.1]a with b). In Figure a, smaller mean
and variance in the number of steps per time interval is exhibited. |Hernandez-Garcia et al. (in
press), in an attempt to explain the more irregular arrangement of clusters for increased contri-
bution of the competition to the death rates, invoke the second component of temporal variation.
They explain that since the birth and death rates follow Poisson processes, the mean and variance
in the number of steps per time interval follow Poisson distributions with mean equal to variance
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equal to the values of the rates. Thus, increased contribution of the competition to the death rates
leads to higher rates, which produce more fluctuating processes in consequence. But, notice that,
under the setting of the model, what matters for the survival and prosperity of our imaginary im-
mobile individual is not the number or variation of the number of steps per time interval, but the
variation in the competitive pressure it feels. Essentially, at each simulation step a contest among
all individuals takes place, and either this contest occurs frequently or not it is the same for the
individual, since the time to the next step is the same for all. Thus, in the present study we will
concentrate on the first component of temporal variation, the variation in N}, among simulation
steps.

In the initial attempt that follows, mobility will be neglected, so that the possible influence
of the demographic parameters on temporal variation will be revealed. Let us consider, then, a
case of population of immobile individuals. The population has reached equilibrium, and pattern
formation has occurred. For simplicity, we can assume that the system size L is so small, or
that the radius R so large, that only one cluster can be formed. In that cluster, all individuals
have the same birth and death rates, b = r;; andd = rﬁl respectively, V i individual in the cluster.
Additionally, since we assumed that we are at equilibrium, b = d = ) — @Ng' = rgo + BNy,
where Nf{’ is the equilibrium number of neighbors within radius R. From the latter equality of
individual rates, it follows that (Hernandez-Garcia et al., in press)) :

eq _ Tb0 — 1dO

R = W. 4.1)
The number of neighbors in equilibrium increases if the sum of the competition’s contributions
to the rates is decreased, and when the basic birth rate increases in respect to the basic death
rate. It is not relevant, for the number of neighbors at equilibrium, if the competition affects
the birth or the death rates. What matters is what we will call here ’competition intensity’, i.e.
the sum y = @ + . Next, we see that the sums of individual rates are B;, = N;'b, and D}/, =

Np'd, and consequently B;’/R;} = D! /R;% = 1/2, since b = d. Thus, the next demographic
event is equally probable to be a death or a birth. Also, since all individuals feel the same
competitive pressure, all of them are equally probable to be chosen. Now, let us imagine that the
next demographic event is a birth. This leads to a decrease of the individual birth rates by a, an
increase of the death rates by 8, and B, D;,; and R,,; may be affected as well. So, we see that
the change in the number of individuals affects the likelihood of the type of the next event. In
what follows, an attempt will be made to have a quantitative picture of this relationship in terms
of the input parameters. This will be helpful for revealing the way by which temporal variation
can be affected by demography in this model.

As the equilibrium number of neighbors N;! had increased by one, we saw that this would
likely affect the probability of the next event being a death or birth. So, let us generalize now
with the probability that the next event will be birth, B),/R,,,, given a deviation from N;q by n,
so that n takes negative and positive values, but still not high enough, so that we can leave aside

the max() function in (3.1). The new, updated sum of birth rates is

By = (N +m)lrio = a(NR' + )], 4.2)
and
R, = (Ng + )0 + rao + (B — ) (N + n)l. 4.3)
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The difference in the probability of the next event being a birth would be

’ ’

E:BZOT_BZe(?T:%_l (44)
R R, R! R, 2 '

tot tot

since at equilibrium the two types of events are equiprobable. By using (#.2)), (.3), and finally
@.1), we can arrive at

B n(a + ,8)2

N . 4.5
R 4(Bryo + argo) + 2n(B? — a?) 4.5)

Finally, we can express (4.5)) in terms of y and § = 8/y, as

B ny

A= = . 4.6
R 4rd0(6 - 1) + 21’1’)/ - 46(7'1,0 + I’l’)/) ( )

By putting ([#.6) back in (#.4), we retrieve the probability of the next event being birth given the
deviation n from the neighborhood equilibrium density N’ (Figure a). The three curves are
for different ¢ values (0, 0.5, and 1) and y = 0.02, with a denser curve representing larger 6. The
general trend in all of them is the same: The probability of a birth event increases above one half
if we are below equilibrium, and decreases below one half if we are above.
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Figure 4.2: Probability of the next demographic event being birth given: (a) the deviation n from
the neighborhood equilibrium density N;’; (b) the contribution & of competition to the death
rates, for n = 1. All individuals were considered immobile, and the whole population was in a
single cluster. Other, common-valued parameters: rpy = 1, ryo = 0.1.

A comparison between the three curves, in Figure 4.2|a, gives the first indication of the way
we could affect temporal variation: The smaller is the competition’s contribution to the death
rates, 0, the steeper is the change in the probability of a birth. For small §, the addition of
individuals results in higher probability of deaths, and the cluster is attracted stronger to the
equilibrium density. Thus, we expect smaller fluctuations for smaller 6. In Figure d.2]b, this
trend is shown in a clearer manner. Here the three curves are for different y values (0.02, 0.04,
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and 0.06) and n = 1, with a denser curve representing larger y. As we would have expected based
on the previous observations, by increasing 6 we must be driven to larger fluctuations. Indeed, in
Figure [4.3] a, the positive relationship of temporal variation with ¢ is shown, after stochastically
simulating an ensemble of single-clustered populations. The comparison between the three or
the two 7y curves in Figures b or[4.3] a, respectively, reveals something additional. In more
intense competition, i.e. for larger y, the temporal variation must be lower (Figure b). In
conclusion, we saw that larger contribution of the competition to the death rates should lead to
higher temporal variation, while more intense competition should reduce it.
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Figure 4.3: Temporal variation, measured as the temporal standard deviation of the number of
a single-clustered population’s immobile individuals, in respect to: (a) the contribution ¢ of
competition to the death rates; (b) the competition intensity y. The error of the mean curves
overlap with the curves of the mean. Other, common-valued parameters: rpy = 1, ryo = 0.1.

Movement could be another source of increase or decrease of temporal variation, as individ-
uals abandon and enter sensing zones by moving around. We could expect that higher mobility
tends to homogenize the temporal variations created by demography. Recall that the way we
explained the adaptive advantage that faster dispersers enjoy in fluctuating environments was
exactly the exploitation of emptier locations and the avoidance of crowded ones. If they have
been selected for that, then fast dispersers should tend to smooth the large deviations created by
a more fluctuating demography. We will have the opportunity to see in the numerical simulations
that this relationship should not be expected to be monotonous when mobility is incorporated, at
least for the parameter values considered. But, indeed, sufficiently high u could enforce its own
temporal variation on immobile sensing zones of radius R.

All in all, we saw that temporal variation must be affected by both demography and move-
ment. About demography, the positive and negative effect of increasing ¢ and vy, respectively,
was shown. For movement, we were limited to speculations, even though later results will reveal
the rather intricate nature of its inclusion in the dynamics, at least for the parameter values tested.

4.2. Spatial variation
By spatial variation we recognize here the variability that is exhibited in the number of neigh-

bors N,’é as an individual i moves around. We can take the extreme example of a single, super-
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mobile individual. This individual is so fast that it can scan all the spatial domain so that time
can be considered frozen, and like the rest of the population stands still. Thus, this individual
will experience fluctuations in the competitive pressure as it travels. And this is what we refer
here when talking about spatial variation: the variability in N,’é across space in a slice of time.

Figure 4.4: Example spatial configuration of clusters of individuals (the black dots) arranged
hexagonally. Each cluster possesses a gray disk of radius R centered on it. If an individual lies
on a disk, it receives the competitive pressure from the individuals of that disk’s cluster. In the
specific example, the inter-cluster distance ¢ = 1.5R.

The example of the immobile population proved useful for the indication of the effect of 6
and y on temporal variation. Here, for the investigation of spatial variation, we will imagine
again an immobile, clustered, equilibrium population. No individuals can be met between the
clusters, and the clusters are so narrow that they can be considered points. That is, all individuals
of a cluster are at the same location. Since the clusters are arranged periodically (Hernandez-
Garcia and Lépez, 2004), we could focus on only one set of seven clusters (Figure[d.4). A gray
disk can be thought as the area under which if an individual lies, it feels the competition of that
cluster’s individuals. Because of the periodicity of the pattern, we can focus only on the central
cluster and its disk, and imagine a super-diffusive individual moving randomly on that disk. It is
apparent that there are various parts on that disk that if the individual steps on, it will receive the
competitive pressure from 1, 2, or maximum 3 clusters. Given the radius R and the inter-cluster
distance ¢, we can calculate the fractions of the disk’s area which are overlapped by another two,
one, or no disks. Our super-mobile individual has a probability to land on a spot from which it
will receive competition from 3, 2, or 1 clusters weighted by the fractions of the respective areas.
For the specific example of Figure d.4] the calculated fractions for the 3-, 2- and 1-cluster reach
areas were approximately 0.159, 0.547 and 0.294 of the disk area, respectively. The equilibrium
number of individuals on a cluster, since we are at equilibrium and we had neglected mobility,
comes from (@.I). And since we have already seen that ¢ and 7y influence temporal variation,
we can check their effects on the spatial variation that our individual senses by stochastically
running our limited system for various values of § and y. From a generated list of Ni,, we take
the standard deviation as a measure of spatial variation of N 1’;. In consequence, spatial variation
was found to increase with ¢ (Figure @] a), and decrease with y (Figure b).
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Figure 4.5: Spatial variation, measured as the standard deviation of the number of neighbors
exhibited to an individual which was randomly moving into the disk of the central cluster in
Figure .4] in respect to: (a) the contribution § of competition to the death rates; (b) the com-
petition intensity y. The error of the mean curves overlap with the curves of the mean. Other,
common-valued parameters: ro = 1, rgo = 0.1.

Let us go on now to the effect of mobility. It was already mentioned that for increasing
values of the movement input parameters, u or k,, we pass from more to less clustered spatial
configurations (Figure [3.1)), and we could link higher values of these parameters with faster
dispersal. Apart from the visual comparison of the degree of spatial homogeneity, the degree of
clustering can be calculated with various ways. One example attempted here was by means of k-
nearest neighbors. Upon reaching equilibrium, and after each moving action, the total distance to
the 4-nearest neighbors of each individual was measured. Comparably, the same was done for an
ensemble of uniform spatial distributions with the same N(f). The total distances were averaged
among individuals, and the ratio of the mean among the random ensemble’s individual average
to the real individual average was kept. Finally, a temporal average was taken, and the same
procedure was done for an ensemble of simulations. From this attempt, the mean ratio values
for the range u € [1,3] of Figure [3.1] were decreasing for increasing y (Figure 4.6 c). Thus,
larger values of the movement parameters decrease clustering, and, possibly, spatial variation in
consequence.

Apart from the negative relationship of clustering with u, a comparison of the three Panels in
Figurereveals an additional trend, which was studied in|Heinsalu et al. (2012): for increased
contribution of the competition to the death rates, clustering increases. Specifically, if we fix the
sum 7, increased 6 leads to increased clustering especially for lower values of u (Figure {.7).
For higher 6, smaller number of individuals is found on the death zones. This happens because,
as [Heinsalu et al. (2012) have shown, the distance ¢ between the clusters is R < ¢ < 2R, and
these individuals may feel the pressure from more than one cluster. When competition affects
more the death rates, then the individuals in the death zones are more probable to be eliminated.
If the competition was mainly in the birth rates, these individuals may not have reproduced, but
they would not have being dying so frequently in respect to others either. That is a reason why
higher clustering is observed for larger §. We saw earlier, in Figure[.5]a, that 6 may affect spatial
variation, and here we learned that it may affect spatial variation indirectly by influencing spatial
clustering.
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Figure 4.6: Clustering in respect to u for three values of the competition’s contribution to the
death rates, ¢, under strong competition y. A uniform spatial configuration has a clustering
value equal to 1. Details of the clustering’s calculation method can be found in Section *{Spatial|
[variation]”. (a) @ = 0.06, 8 = 0; (b) @ = 0.03, 8 = 0.03; (c) @ = 0, B = 0.06. The error bars
denote the error of the ensemble mean. Other, common-valued parameters: «,, = 1074, R = 0.1,
rpo = 1, Yao = 0.1, N(O) = 1000.

In conclusion, spatial variation was found to be positively and negatively influenced by ¢ and
v, and that clustering is affected by both demography and mobility. Larger 6 and smaller u lead
to higher clustering. But we have to keep in mind that higher clustering may not be synonymous
to higher spatial variation. The way of measuring clustering, at least in this study with the k-
nearest neighbors, is in terms of the distances between closer individuals. But, according to our
definition of spatial variation, an individual’s world is within radius R. As we will see later, the
agreement of clustering with the measured spatial variation in the numerical simulations is not
much faithful.
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Figure 4.7: Spatial configurations of individuals (black dots) under 3 values of §, the competi-

tion’s contribution to the death rates. (a) 6 = 0; (b) § = 0.5; (¢) 6 = 1. Other, common-valued

parameters: K, = 1074, u=1,R=0.1,r,9=1,7ry50 =0.1,y = 0.06, N(O) = 1000. The snapshots

were taken at simulation times ¢ = 1000, ¢t = 300 and ¢ = 100 for (a), (b) and (c), respectively.
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4.3. Temporal over spatial variation

Until now, we have concluded that increased weight of the competition to the death rates,
0, increases both kinds of variations. On contrary, more intense competition, y, was shown to
reduce both kinds of variation. But, in this study, which is about the evolution of dispersal, what
we should care mainly is the relative difference between the two kinds, according to the literature.
We could take a look at how the ratio of temporal over spatial variation is affected by the two
demographic parameters considered in this Section. The effect of mobility on the ratio will be
investigated only on the numerical simulations of evolution. Contrary to what has been found for
the two kinds of variation independently, by either increasing § or vy the relative size of temporal
variation increases in respect to spatial variation (Figure [4.8]a and b). Thus, we should expect
that for increasing ¢ or y evolution will tend to higher mobility.
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Figure 4.8: Temporal over spatial variation, calculated from the mean of temporal and spatial
variation of Figures [4.3]and [£.5] respectively, in respect to: (a) the contribution 6 of competition
to the death rates; (b) the competition intensity 7.
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5. Evolution of dispersal

Section "{Basics of spatiotemporal variation]” managed to extract three input parameters by
which spatial and temporal variability should be influenced: (i) the intensity of competition, de-
fined as y = a + B, with a and B from (3.1); (ii) the competition’s contribution to the death
rates, defined as 6 = §/y; and (iii) both of the movement parameters, u and «,,. The influenced
spatiotemporal variation, according to literature, is expected to affect the outcomes of dispersal
evolution. Thus, by manipulating the aforementioned parameters, we aim to test if the sub-
sequent change in spatiotemporal variation will lead to a different evolutionary outcome. The
numerical, evolutionary experiments manipulated two competition intensity levels (strong and
weak competition, ¥ = 0.06 and vy = 0.02, respectively) and a limited number of the competi-
tion’s contribution to the death rates (principally, the two extremes 6 = 0, 1). The effect of the
other parameters has not been investigated, and thus held fixed: R = 0.1, rpp = 1, and r49 = O.1.
Additionally, x, = 10~* will be generally held as such, except from one case where we will take
a look at the evolution of «, in populations with fixed u = 3. Thus, we will focus on the effect of
¢ and y from the demographic input parameters, and mainly the effect and evolution of y from
the movement parameters. Notice that, because of the continuously applied eco-evolutionary
dynamics, the relation of u with spatiotemporal variation should be bidirectional: ¢ should in-
fluence spatiotemporal variation (the ecological counterpart of the dynamics), and at the same
time spatiotemporal variation is expected to affect u (the evolutionary counterpart). The exper-
imental setting aimed to elucidate: (i) the effect of the contribution of competition to the death
rates under strong competition; (ii) the effect of the contribution of competition to the death rates
under weak competition; and (iii) the effect of competition intensity for a given contribution of
the competition to the death rates. The effects of these treatments will be considered under two
main approaches: (i) by inspecting the temporal change in the distribution of individual mobility
of evolving populations; and (ii) by measuring the temporal and spatial variation of evolving and
non-evolving populations.

The rest of this Section is structured as follows. First, details will be given regarding the
methodology of the evolutionary simulations. And next, we will approach the evolution of mo-
bility from the three aforementioned treatments: under *[Strong competition]’, under "{Weak com

’, and by a ’|Weak-strong competition comparison|’.

5.1. Methodology

5.1.1. Measuring variation

Spatial variation was defined as the variation in the number of neighbors within radius R, Ng,
across space in an instance of time (Section *[Spatial variation]”). Temporal variation was then
defined as the variation of N in a fixed location as time goes by (Section *{Temporal variation]’).
For the present study, the standard deviation of Nk was used as a measure for both types of
variation. For both types of variation, the same setting was implemented: 25 sensing disks of
radius R = 0.1, fixed in space, regularly arranged in the L X L domain of L = 1. The arrangement
was such that there was no overlap between the areas each sensing zone was covering (Figure
@]). The center of the bottom left zone was at (0.1, 0.1), and the subsequent centers were placed
at intervals of 0.2, both in the horizontal rows and vertical columns. Of course, this is one way
of arranging the static sensing zones, and someone could argue that maybe a random distribution
of zones, and a larger number of them, would be more appropriate. Even if it is, something
that was not tested in this study, the important thing is that we compare measurements under
the same setting, and a difference in variation, if any, should be detected across treatments. For
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the spatial variation, the standard deviation of Ng, s,,, between the 25 disks was calculated after
each simulation step. In a simulation without evolution, the equilibrium temporal average of s,
Ssp, was kept. The final measure was (3,,), an ensemble average from independent simulations.
If evolution was taking place, then s;, was temporally averaged at subsequent intervals of a
specified number of steps. For the temporal variation, the temporal standard deviation of Ng,
sy, for each one of the disks was calculated. For a specified number of steps upon reaching
equilibrium, the average between the 25 disks, 5,, was kept. The final measure was (), an
ensemble average. If evolution was taking place, then s, was spatially averaged between the 25
disks for subsequent intervals of a specified number of steps. Finally, to compare the sizes of
spatial and temporal variation, the ratio of the temporal over the spatial variation was taken: for
each simulation, 5,/5,, was kept, and then it was averaged from an ensemble.
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Figure 5.1: Spatial configuration of the 25 sensing zones of radius R = 0.1, for the measurement
of temporal and spatial variation. The sensing zones are depicted as gray disks, on an example
spatial configuration of individuals (clusters of black dots).

5.1.2. Simulating evolution

Simulating evolution focuses on the evolution of phenotypic traits, and its main advantage
lies exactly on that: it tackles the now acknowledged complexity of the genetic contributions,
by studying the dynamics of their end-result alone: the phenotype. A phenotypic trait, a general
and all-in-all term, is any characteristic of an organism that can be studied. For example, you
can consider as phenotypic traits the color of your eyes, the length of giraffes’ necks, the aggres-
siveness of baboons, and for us here the mobility of the digital individuals. The mechanisms that
give rise to these traits can be complex, and many times still unknown. Instead, with this scheme,
all these intricacies are omitted, and we focus on the selection of phenotypic traits, not genes.
Another advantage is that it links population dynamics with evolutionary change, in agreement
with contemporary findings (Carroll et al., 2007).

This approach attempts to simulate real evolution. The principal idea is to introduce muta-
tions in an already established population. The successful mutants can invade in an ecological
setting shaped by the resident, and, by their turn, alter the environment. Thus, an interplay occurs
between population and evolutionary dynamics. We consider the evolution of one trait, either u
or k,, while keeping the other fixed. We start with an equilibrium population of all individuals
having the same value for the evolving trait. The offspring inherit the parents’ characteristics
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except for the evolving trait which is allowed to mutate its value. The mutation is an increase
or decrease of the parental trait value, drawn from a uniform interval. Because the range of the
evolving trait is pre-specified, if a mutation results in a value greater or less than the maximum
and minimum of the range, the trait takes the value of that extreme. The simulations are left
enough time to reach the evolutionary stable distribution of the trait, if any.

The simulations of evolution are depicted here mainly in plots of temporal change of a trait’s
distribution. Thus, for each plot, one evolutionary trajectory is shown. The conclusions of this
study seem to be based on those single trajectories. The fact is that for each evolutionary trajec-
tory shown here, 9 more were run for replication. A qualitatively similar evolutionary outcome
was observed in all other repetitions, for each simulation shown in this study. Hence, the single
evolutionary trajectory shown here for each case should be considered a decent representative.

5.1.3. Programming implementations

The programs of this study were encoded in C++. For the generation of pseudo-random
numbers, the Mersenne twister random number engine was used, from the <random> library
introduced in the C++ 2011 standard. Most of the computation time was consumed at the calcu-
lation of the number of neighbors, N,ie, since after each moving action, Nzie had to be recalculated
for all individuals. For this, the KDTREE2 module (its C++ counterpart), a free and open-source
software, was assigned with the counting of neighbors (Kennel, 2014). Considerable amount of
time was also saved by running independent simulations in parallel with the help of GNU Parallel
(Tange, 2011)), a shell tool for executing jobs in parallel. It could manage the continuous assign-
ment of jobs to the cores, controlling the combinations of all input values, writing the program
output to files, and all these in a single shell line.

5.2. Strong competition

In this Section, we will consider stronger competition (y = 0.06) in respect to the next Sec-
tion’s weaker competition setting (there y = 0.02). The influence of dispersal evolution by the
competition’s contribution to the death rates will be investigated. Initially, it will be investi-
gated by observing the temporal change of individual mobility during simulations of evolution.
And next, the simulations of evolution will be interpreted in terms of measured spatiotemporal
variation of non-evolving and evolving populations.

Let us start with the case of the competition not affecting the death rates at all, 6 = 0. We
will take a look at the evolution of g, starting from either 4 = 1 or u = 2 of our predetermined
range u € [1,3]. Starting from u = 1, and allowing mutations after the population had reached
equilibrium, no net evolutionary change had been observed, apart from the right tail of the u
distribution because of the continuous production of mutations (Figure a). With this initial
condition, the evolutionary stable mobility was the lowest allowed. If starting from y = 2, and
again allowing mutations upon reaching equilibrium, the distribution was driven to the highest u
allowed (Figure[5.2]b). The evolving population ascended in y values, and then it was wandering
rather undirectionally in the u € [2, 3] range. Thus, in stronger competition (y = 0.06) affecting
only the birth rates (6 = 0), slower dispersal was selected in a lower mobility range, and faster
dispersal was selected in a higher mobility range, for the parameter values considered.

Let us continue now with the 6 = 1 case, competition affecting only the death rates. If the
initial 4 = 1, the population was evolving to the highest mobility (Figure[5.2]c), in contrast to
the respective case of competition not affecting the death rates, 6 = 0, where it stayed at the
lowest mobility (Figure a). Thus, by redirecting the total contribution of competition from
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the birth to the death rates, evolution was redirecting the evolutionary stable u from its lowest to
its highest value. Notice, additionally, the greater speed and apparent directionality exhibited by
the evolving yu distribution as soon as its main volume had passed ¢ = 2, in comparison with the
slower mobility regime of u < 2 (Figure[5.2]c). Of course, if all individuals were starting with
u = 2, again the population was driven to u = 3, if competition was affecting only the death rates
(Figure[5.2]d). But, this time the greater speed and directionality of approaching and staying at
the maximum g, in comparison to the lower speed and undirectionality exhibited in the case of
competition affecting only the birth rates (Figure[5.2]b), was apparent.
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Figure 5.2: Temporal change in the distribution of ¢ during simulations of u evolution, under
strong competition (y = 0.06). The distributions are depicted vertically, where darker color,
according to the legend, denotes higher relative frequency of y in the bins. (a) and (b) competition
affecting only the birth rates, § = 0, and starting with all individuals having u = 1 and p = 2,
respectively; (c) and (d) competition affecting only the death rates, 6 = 1, and starting with all
individuals having ¢ = 1 and y = 2, respectively. In all simulations, mutations were allowed
upon reaching equilibrium. The individuals’ offspring were mutating their ¢ by a quantity drawn
uniformly from the interval (—0.05,0.05). Other, common-valued parameters: k, = 10°%4,R =
0.1, rpo = 1, rg0 = 0.1, v = 0.06, N(0) = 1500.

We saw that when competition was impacting only the birth rates, the evolutionary stable
mobility was the lowest if starting from y = 1, but this changed if the initial © = 2 (Figure
[5.2]a and b). Moreover, when competition was affecting only the death rates, § = 1, then the

24



evolutionary trajectory was moving to higher mobility even starting from u = 1, and for initial
u = 2 the path towards higher mobility was even more rapid and determined (Figure[5.2]c and d).
We have compared the outcomes for the two extremes of §, but we could be less rough by taking
more, intermediate values of ¢, and by starting each simulation of evolution from ¢ = 1. Thus, we
could identify a shift in the selection towards higher mobility. Even though it is a rough attempt
to identify the change in the selection of dispersal, for ¢ € (0.5,0.67), or else for 8 € (0.03,0.04)
and higher, 4 = 1 was not evolutionary stable anymore, and higher ¢ had the advantage (Figure
[5.3]a). As a final remark, someone could object that the evolutionary outcomes which this study
considers until now are on the evolution of u. Thus, the results may have to do with the movement
type, as we pass from the Lévy-like movement of 4 = 1 to the Brownian-like of u = 3. As a
limited attempt to cast away such doubts, the evolutionary equilibrium distributions of «,, for
u = 3, starting from the lowest 3, are shown in Figure[5.3]b. The same qualitative pattern arose:
at some interval of ¢, a shift was observed from the lowest to the highest diffusion coefficient ;3.
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Figure 5.3: Evolutionary equilibrium distributions of the movement parameters y (a) and «3 (b)
for various degrees of the competition’s contribution to the death rates, ¢, under strong compe-
tition, vy, and starting from lowest mobility allowed. The distributions are depicted vertically,
where darker color, according to the legends, denotes higher mean relative frequency of u or k3
in the bins. For each ¢, a single simulation of evolution was carried out, starting with u = 1 or
k3 = 1078, and mutations were allowed upon reaching equilibrium. Each rectangle is the tem-
poral mean for a duration of + = 1000, sampled every ¢ = 5, after the distribution had reached
a final, relatively unchanged state. The individuals’ offspring were mutating their i or x3 by a
quantity drawn uniformly from the intervals (—0.05,0.05) and (=107, 10~%), respectively. (a)
Ky = 1074; (b) 4 = 3. Other, common-valued parameters: R = 0.1, ry0 = 1, rgo = 0.1, ¥ = 0.06,
N(0) = 1500.

By considering all the previous observations of this Section, two trends seem to emerge.
First, for a given contribution of competition to the death rates, §, evolution in a lower mobility
regime was attracted stronger to the lowest mobility. By this remark we could justify: the shift
in mobility selection, from lower to higher mobility, if starting from lower or higher mobility
with 6 = 0 (Figure [5.2]a and b); and the more determined and rapid character of evolutionary
convergence as the u distribution had passed u ~ 2 with § = 1 (Figure[5.2]c). Second, for a given
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mobility regime, increasing the competition’s contribution to the death rates, lead to stronger
attraction to higher mobility. By this remark we could justify: the departure of the evolutionary
trajectory from the low mobility end, u = 1, when 6 was larger (Figure [5.2] a and c); and the
thinner and more stable left tail of the distribution at the maximum mobility end, when § was
again larger (Figure b and d). As an additional remark, in none of the simulations was an
intermediate mobility found to be evolutionary stable. Evolution was leading either to an end of
the considered mobility range, or it was wandering in a higher mobility range. Later, based on
the measured spatiotemporal variation and the eco-evolutionary dynamics at play, we will discuss
why an intermediate mobility would be impossible to be evolutionary stable in the present study
and model. All the aforementioned interpretative attempts, still on a rather pattern-based level,
are preparing us to turn to a deeper explanation of the patterns and trends observed, based on the
opposition of spatial and temporal variation, and the idea of eco-evolutionary feedback.

It was said previously that 4 ~ 2 seemed to act as a border separating two different evo-
lutionary behaviors, when competition was not influencing the death rates, 6 = 0. On its left,
significantly stronger selective forces where acting to hold the population to the lowest mobility
(Figure a and b). According to the mean-field approach of the model in [Hernandez-Garcia
et al. (in press), for these parameter values, pattern-forming instability occurs at u = 1.81. This
could suggest that an abrupt change in spatial variation due to a change in clustering would be
the reason for this sudden change in the strength of the selective force. Indeed, measured by
the 4-nearest neighbors method presented in Section *{Spatial variation]’, clustering seemed to
dissolve rapidly to the uniform spatial distribution across the interval u € [1,2] (Figure a).
A mechanistic explanation based on clustering, for the evolutionary behavior in the i < 2 range,
could be that below u =~ 1.8 a clustered population was resistant to more mobile mutants, since
the latter ended up more often in the death zones (Heinsalu et al., 2013)). On contrary, in the y > 2
range, the spatial configurations were rather uniform, and therefore the evolution had redirected
towards higher mobility.

For the 6 = 1 case (competition only on the death rates), we saw that in both mobility
regimes, faster dispersal was selected positively (Figure[5.2]c and d). We could invoke again the
pattern-forming instability and its subsequent clustering to explain this case. But here we meet
a controversy: Clustering for this setting, and according to the 4-nearest neighbors method, has
again its maximum value at 4 = 1, and decreases fast towards uniformity to u = 2 (Figure[4.6]c).
Moreover, compared with the case of competition solely to the birth rates 6 = 0 (Figure a),
clustering for § = 1 is larger in the lower p values. In this case, the explanatory use of clustering
is problematic, since even in the highly clustered regime of u = 1 and § = 1, faster dispersers had
the advantage. Hence, here we expect that another selective force is at play. The incorporation of
temporal and spatial variation, as we defined them in Sections *{Temporal variation|” and *{Spatiall
[variation]”, will prove a satisfactory way to interpret evolutionary outcomes. First, we will expose
the conclusions and speculations appeared in Sections ’{Temporal variation|’, {Spatial variation|’
and ’{Temporal over spatial variation|” to the measured temporal and spatial variation of non-
evolving equilibrium populations.

About temporal variation, the positive relationship of temporal variation with the competi-
tion’s contribution to the death rates, 6, was shown back at Section *{Temporal variation|’, by
neglecting mobility (Figure a, for y = 0.06). In simulations of non-evolving populations at
equilibrium, where mobility was also incorporated, generally the same positive relationship was
observed (Figure[5.5]b): for a given low value of u, temporal variation was increasing with 5. A
similar trend was not observed for higher values of u, but this is expected since lower values of
4 resemble more the neglected mobility assumption of Section ’{Temporal variation]’. Next, the
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negative relationship of temporal variation with competition intensity y (Figure 4.3]b), will be
postponed at Section "{Weak-strong competition comparison|” for the later comparison between
the two competition intensity regimes. Lastly, we guessed back in Section *{Temporal variation|’
that increasing mobility may tend to alleviate high temporal fluctuations. Indeed, this was ob-
served for larger 9, in Figure @] b (for 6 = 1). Generally, for a given §, temporal variation,
starting from u = 1, was reaching a local maximum at u = 1.5, then decreasing until 4 ~ 2, and
finally it was reaching an asymptote value of around 3.9. The minimum of temporal variation
located at 4 =~ 2, and generally the whole trend, is intriguing. But, as long as the achievement
of this study’s goals is not interfered by this interesting phenomenon, we will leave it aside. In
conclusion, even without neglecting mobility, higher contribution to the death rates, §, was cou-
pled by higher temporal variation. And movement by its own was following a non-monotonous
pattern, even though at high mobility it was imposing specific temporal variation, independently
of the competition’s contribution to the death rates.

About spatial variation, in Section ’[Spatial variation|’ the positive relationship of the com-
petition’s contribution to the death rates, 6, was shown for a simplified system (Figure a,
for strong competition y = 0.06). In the present Section, the measured spatial variation of non-
evolving populations, for ¢ = 1 which resembles more the neglected mobility assumption, was
reaching an asymptote with § (Figure[5.5]c). [Heinsalu et al. (2012) showed that the distance ¢ be-
tween the clusters is R < ¢ < 2R, and that clustering increases with increasing ¢, as we saw here
(Figure [4.6). By these two considerations we can understand that for larger &, spatial variation
increases as the inter-cluster space is emptying. But at the point when almost all individuals are
met only in the clusters, spatial variation cannot increase more, since a disk of radius R thrown
on a periodic clustered arrangement, with the aforementioned limited inter-cluster distances, has
a specific range of number of clusters that can capture beneath it. For larger y (Figure[5.5|c), spa-
tial variation had a continuous increase with ¢, but this continuous increase was getting weaker
for increasing u. Thus, as with temporal variation (Figure[5.5]b), for a given ¢ and increasing u,
spatial variation was reaching an asymptote value of around 3.9—4, indicating that independently
of 9, higher mobility imposes not only a specific temporal but also a specific spatial variation
(and notice that the asymptote values of both kinds of variation are similar). About the effect
of vy on spatial variation, it will be discussed on the relevant Section '{Weak-strong competition|
[comparison]”. Another notice, we speculated that clustering and spatial variation may not be
synonymous. If we compare Figure a, and Figure[5.5]c (for § = 0), we will reveal the differ-
ence. While clustering decreased monotonously, spatial variation decreased until u = 2, and then
increased again towards the plateau of a value around 3.9-4. Thus, again the intriguing pattern
of the local minimum at u = 2 appeared when we included mobility, and it could denote the
significance of the critical value of u ~ 1.81 for pattern formation. For the larger 6 = 1 in Figure
[5.5] ¢, the monotonous decrease of spatial variation resembles qualitatively the one of cluster-
ing, but based on smaller ¢, we could say that clustering does not exhibit the same behavior as
spatial variation. All in all, we saw that spatial variation reaches an asymptote with increasing
mobility, its relationship with ¢ depends on u but generally was found positive here also, and that
clustering cannot capture spatial heterogeneity in the way individuals perceive it. Consequently,
it is suggested that clustering would not be a helpful measure for the study of the evolution of
mobility with this model.

Finally, regarding the ratio of temporal over spatial variation, in Section ‘{Temporal over|
[spatial variation]” it was shown that it follows a positive relationship with the competition’s con-
tribution to the death rates (Figure [4.8]a, for y = 0.06). Based on the ratio measurements of
the full model, similar trend was observed for 4 = 1, which is closer to the neglected mobility
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assumption (Figure[5.4). And to summarize the findings from the comparisons of spatiotemporal
variation, we could say that the measurements on the regular system based on the Gillespie al-
gorithm incorporating movement agreed with the measurements on the simplified systems back
in the previous Sections ’[Temporal variation|’, ’{Spatial variation]” and *{Temporal over spatiall
[variation]”: both spatial and temporal, and the ratio of variations were increasing with increas-
ing contribution of the competition to the death rates. Based on the positive relationship of
the ratio with ¢, we expect that selection will favor faster dispersers as the death rates become
more competition-dependent. Next, we will continue with the interpretation of the evolution-
ary outcomes based on the measured temporal and spatial variation of non-evolving equilibrium
populations. As theoretical and empirical observations suggest, we will not focus on each type
of variation independently, but mainly on the ratio of their comparison: temporal variation over
spatial variation.
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Figure 5.4: Ratio of temporal over spatial variation, of non-evolving equilibrium populations
with ¢ = 1, in respect to 8 under strong competition. Details for the method of spatiotemporal
variation calculation can be found in Section *{Measuring variation|’. The error bars denote the
error of the ensemble mean. Parameters: k, = 1074, u=1,R=0.1,r0=1,rg5 =0.1,y = 0.06,
N(0) = 1500.

First, we will give an explanation, in terms of spatial and temporal variation, for the departure
of the evolutionary trajectories from the minimum mobility end, for increasing ¢ (Figures a
and c, and @] a). We saw that the first value at around which faster dispersal was selected, if
starting from ¢ = 1, must lie in the interval § € (0.5,0.67) or else in 8 € (0.03,0.04) (Figure[5.3]
a). We suspect, according to theory, that a net increase in temporal in respect to spatial variation,
5:/35p, must have occurred for increasing ¢ in that interval. Indeed, the measured §;/5;,, for
non-evolving populations of u = 1, was found to increase from below around 0.4 to above 0.4,
exactly on that interval, i.e., 8 € (0.035,0.04) (Figure [5.4). Thus, we assume from here on
this Section, that a 5,/3, value greater than 0.4 selects positively for faster dispersal. And as a
remark, in this study a black box approach will be followed regarding the value of §;/5, above
which faster dispersal is selected. Thus, we will not delve into the investigation of the reasons
why this value triggers a redirection of selection, but instead we will consider it as a given fact.
This postulation of the threshold 5,/5;, value of 0.4 will now be illustrated with a previously
presented example of an evolutionary trajectory during which no departure was observed towards
higher mobility (Figure [5.2]a). Upon reaching equilibrium, mutations were allowed to occur in
the u = 1 and 6 = O population of lower 5;/5,,. The population was at the minimum of the
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specified mobility range, and thus the mutations changing the u of the offspring were only those
which were increasing u. Under a regime which was not favoring faster dispersal (5,/5,, < 0.4),
the growth of the more mobile mutants was limited, and the main bulk of the population, which
was more adaptive under this spatially variable regime, had the lowest mobility allowed. Next,
we will attempt to explain the rest of the presented examples of evolutionary outcomes, based
mainly on the ratio §,/5,.
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Figure 5.5: Temporal and spatial variation of non-evolving equilibrium populations in respect to
u and ¢ under strong competition. Details for the method of spatiotemporal variation calculation
can be found in Section ’|Measuring variation|’. (a) ratio of temporal over spatial variation; (b)
temporal variation; (c) spatial variation. The error bars denote the error of the ensemble mean.
Parameters: «,, = 1004, R=0.1,r0 =1, ryo=0.1, v = 0.06, N(0) = 1500.

We explained the § = 0 case, competition affecting only the birth rates, in the low mobility
regime, and now we will continue with the § = 1 case of competition affecting only the death
rates, again in the low mobility regime. In specific, the trajectory was starting with u = 1, and
upon reaching equilibrium it was heading towards faster dispersal, rather slowly in the y < 2
range, and then faster in the 4 > 2 range (Figure [5.2]¢). For maximum contribution of the com-
petition to the death rates (8 = 0.06, y = 0.06, and thus § = 1), and lowest mobility (u = 1),
5/5sp > 0.4 (Figure @), and thus faster dispersal is expected to be favored. More mobile mu-
tants are then enjoying weaker competitive pressure than less mobile ones, and grow in numbers.
The continuous production of mutations is mainly favored to the right of u, and the u distribu-
tion is expanding and getting flatter, with the fastest individuals having y almost 2. The increase
in higher mobility individuals in respect to less mobile ones, is expected to alter the ecological
setting. For example, the ratio 5;/3;, of non-evolving equilibrium populations with ¢ = 1.5 and
6 = 1 was estimated 5,/5;, = 0.614 + 0.018 (Figure@a, for 6 = 1 and u = 1.5). Hence, we
expect that 5,/5;, has increased in the example of our evolving population as well. Notice at this
point, in Figure[5.3] that while spatial and temporal variation, as it has been already mentioned,
do not follow a monotonous trend, the ratio §,/5, does, and this happens in all ¢ values con-
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sidered there. This is crucial for the outcome of our example (the steepness of the monotonous
increase will be adopted as an explanation of the evolutionary speed and directionality later on).
Because of the monotonous increase of §,/5, with 4, a positive eco-evolutionary feedback loop
is expected to take place: Being in a highly variable temporally environment (in respect to spa-
tial variability always), faster dispersers are selected. As they increase in numbers because of the
positive selection, they increase more the relative size of temporal in respect to spatial variation,
which selects for even more mobile individuals. The whole eco-evolutionary process will lead
the population to be composed by the fastest dispersers allowed. Still, though, we expect that due
to the continuous, unavoidable insertion of new mutants, less mobile individuals will constantly
be produced, creating a left tail to the extreme end mobility distribution. As a final note, the
existence of a positive eco-evolutionary feedback could be given as the reason why intermediate
mobility values will not be observed in this model under this setting. Selection is directed to an
end, where favored mutants create an environment even more favorable for them. As long as
there is not an opposing selective force, or a trade-off of some kind, no intermediate values will
be observed as in|Waddell et al. (2010). The distinguishing characteristic is that their model does
not incorporate eco-evolutionary feedback. Temporal and spatial variation in their model are ex-
clusively external forces, and thus they manage to shape mobility to intermediate values. In the
present model, both kinds of variation are shaped by the individuals, which are then selected by
their self-created environment.

When presenting the results of this Section, we distinguished two emerging trends: for a
given contribution of competition to the death rates, ¢, a higher mobility range selected stronger
for higher mobility; and for a given mobility range, increasing ¢ selected stronger for higher mo-
bility. Both of these trends could be understood in terms of the values and steepness of 5;/3;, in
Figure@]a. A §;/55p > 0.4 would mean selection for higher mobility, and a larger 5;/3;, above
the threshold would mean even stronger selection towards the highest mobility end. Evolution-
ary speed and directionality could be explained in terms of both absolute values and steepness:
greater speed and directionality would be expected under simultaneously larger 5,/5;, values and
higher steepness of §;/3,, with y. Regarding the first trend, the example trajectories we have
been exposed to the shift in mobility selection with a change in the mobility range (Figure[5.2]a
and b), and the more determined and rapid character of evolutionary convergence as the u distri-
bution had passed u ~ 2 (Figure[5.2]c), could be explained based on the aforementioned remarks.
In the former example, by starting from u = 2, 5,/5,, was well above threshold (Figure @]a, for
¢ = 0); and in the latter, even though the steepness had decreased a little, 5;/5,, was larger in the
u > 2 range (Figure[5.5]a, for § = 1). For the second trend, let us take a look at two examples.
The first one, the departure of the evolutionary trajectory from the low mobility end, u = 1, when
6 was larger (Figure[5.2]a and c), has been already explained. We based our explanation on the
fact that the only thing which we were expecting to increase so that a redirection of selection
would occur, would be an increase in §;/3,,. Indeed, because §,/5,, > 0.4 for 6 = 1, a shift in
the selection occurred. The second example regards the thinner and more stable left tail of the
distribution at the maximum mobility end, when ¢ was again larger (Figure [5.2]b and d). This
could be explained by a comparison of the two § cases in Figure[5.5]a, for6 = 0 and 6 = 1 in
the u € [2,3] range. For 6 = 0, 5;/3;,, has larger values and the change of the values with u is
smaller. The ecological setting has so large 5,/5,, that it is almost the same if it is occupied by
individuals with 4 = 2, u = 2.5, or u = 3. This is denoted by the low steepness of §,/5,, with
. And it means that if we start with 4 = 3, lower mobility mutants receive weaker negative
selection. As a consequence, the u distribution would be expected to be more expanded, and
less attached to the maximum mobility end. As this Section arrives to its end, let us follow the
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temporal change in temporal and spatial variation of evolving populations. There, we will test
if the interpretation from the non-evolving populations is in agreement with what the evolving
ones show, and if there is additional insight offered by this different approach.
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Figure 5.6: Temporal change in the distribution of y and in the corresponding spatial and tem-
poral variation (3, and §;, respectively) of evolving populations, under strong competition and
various degrees of the competition’s contribution to the death rates, 6. (a), (b) and (c) 6 = 0;
(d), (e) and (f) 6 = 0.5; (g), (h) and (i) 6 = 1. The u distributions are depicted vertically, where
darker color, according to the legend, denotes higher relative frequency of u in the bins. Muta-
tions were allowed upon reaching equilibrium. The individuals’ offspring were mutating their u
by a quantity drawn uniformly from the interval (-0.05, 0.05). Details for the method of 5, and
§; calculation can be found in Section '|Measuring variation|’. Variation was calculated at every
subsequent interval of 2500 simulation steps. Parameters: «,, = 1004, R=0.1,r0 =1, rg0 = 0.1,
y = 0.06, N(0) = 1500.

Let us take a look at the spatiotemporal variation’s trajectories of three cases of evolving
populations (Figure [5.6). All these cases should be familiar to the reader, since they have been
examined previously in this Section. For the first column of Panels (Figure 5.6 a, b and c),
for competition solely on the birth rates (6 = 0) and initial 4 = 2, evolution headed towards
higher mobility, and attached to the maximum mobility end, even though not so strongly. Both
spatial and temporal variation were having almost the same values, their ratio was very close to

31



1. During the period of the distribution’s shift to the right, the ratio of the variations increased.
Thus, as the distribution was moving to the right, mainly temporal variation increased. And the
same was happening to the other direction: For example, notice that during the large drop in the
peak of the distribution around the middle of the simulation, the ratio decreased, and if we could
focus we could see that this was due to a decrease in temporal variation. The values that the
trajectories followed are in agreement with the respective measurements from the non-evolving
populations (Figure [5.3). Thus, upon equilibrium and its subsequent beginning of mutations,
the large 5;/3,, was selecting for higher mobility. The main ecological effect of this selection
was an increase in the temporal variation of the environment, and a subsequent selection of even
more mobile individuals. Notice, though, that in this highly variable temporally environment,
individuals with mobility lower than the maximum are weakly selected, and there are large shifts
in the mobility distribution.

In the second column of Panels (Figure@]d, e and f), we have the case of § = 0.5 and initial
u = 1. The value of ¢ is close enough before the value at which we located the redirection of
selection from the lowest u = 1 to the highest u (Figure a). The distribution is stabilized,
having the right tail due to mutations. Approximately, the two variations fluctuate below the
values obtained from non-evolving populations (Figure 5.5]b and ¢, for § = 0.5 and u = 1),
while their ratio fluctuates on around the similar level (Figure [5.5]a, for 6 = 0.5 and u = 1).
Perhaps, the existence of larger u mutants is the reason for this discrepancy. Noticeable are the
larger fluctuations of the spatial variation. And if we forego to the next column, we will see that
at 6 = 1 spatial variation in time fluctuates similarly. According to the patterns in non-evolving
populations (Figure [5.3] a, b and c), it seems that no apparent difference is evident. The only
thing that could be thought, and the only thing that for sure changes is 4. It has been noted
(Hernandez-Garcia et al., in press), and possibly observed here (Figure 4.7| comparison between
Panels), that the periodicity of the clusters is more irregular for larger 6. This fact, coupled with
the higher temporal variation in larger ¢, maybe is responsible for the larger size of the spatial
variation’s fluctuations.

Finally, in the third column (Figure[5.6] g, h and i), for § = 1, we have the departure of the
evolutionary trajectory towards the highest of mobility. First, by comparing the second with the
third column, we see that for 6 = 1, the spatial and temporal variation of the population at its
initial mutational stages are relatively larger than the ones for § = 0.5, but the ratio seems similar.
The most significant phenomenon observed is the decrease in spatial variation as mutations are
starting to be produced after the population equilibrium, and this is followed by a net increase in
the ratio §,/5,. Notice that the ratio fluctuates below the threshold value we assumed, §,/5;, =
0.4. But again, the same applies and to its fluctuating value after the distribution had reached
its new evolutionary stability (compare with Figure[5.5]a, for 6 = 1 and u = 3). All in all here,
a rough visual inspection was offered. Of course, solid conclusions could be drawn from the
statistical and theoretical analysis of the temporal dynamics of variation. Nevertheless, it was
judged that the temporal dynamics of variation during evolution would be an interesting picture
to inspect, even visually. We saw that, depending on the case, either spatial or temporal variation
seems to lead the dynamics towards new evolutionary stability. On the other hand, someone
could note that the eco-evolutionary dialogue that is at play continuously, should not allow us to
determine a principal driver of the dynamics. Are spatial and temporal variation the drivers or
the end results of dispersal evolution?

32



5.3. Weak competition

In this Section, we will consider weaker competition (y = 0.02) in respect to the previous
Section’s stronger competition (y = 0.06). The influence of the evolution of dispersal by the
competition’s contribution to the death rates will be investigated again for this weak competition
setting. Initially, it will be investigated by observing the temporal change of individual mobility
during simulations of evolution. And next, the simulations of evolution will be interpreted in
terms of measured spatiotemporal variation of non-evolving and evolving populations.
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Figure 5.7: Temporal change in the distribution of u during simulations of y evolution under
weak competition (y = 0.02). The distributions are depicted vertically, where darker color,
according to the legend, denotes higher relative frequency of u in the bins. (a) and (b) 6 = 0, and
simulation started with all individuals having u = 1 and u = 3, respectively; (c) and (d) 6 = 1,
and simulation started with all individuals having ¢ = 1.75 and u = 2, respectively. Mutations
were allowed upon reaching equilibrium. The individuals’ offspring were mutating their u by
a quantity drawn uniformly from the interval (-0.05,0.05). Parameters: «, = 1004, R = 0.1,
rpo = 1, Yao = 0.1, Y= OOZ,N(O) = 1500.

For the competition affecting only the birth rates case, 6 = 0, we will follow the evolution
of u, starting from either of the two extremes of our predetermined range: u € [1,3]. Starting
from y = 1, no net evolutionary change had been observed (Figure[5.7]a). If starting from the
other extreme, from y = 3, the distribution was driven again to the lowest u allowed (Figure |31|
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b). The evolving population needed relatively longer time to slowly descent in u values, until its
main bulk reached p = 2, and then it headed faster to the 4 = 1 end. Thus, in weaker competition
(y = 0.02) affecting only the birth rates (6 = 0), slower dispersal was selected in both mobility
regimes, for the parameter values considered.

Now, on the competition affecting only the death rates case, § = 1. A noticeable thing
in the simulation of evolution of Figure b, was the difference in the speed of evolutionary
change between the u > 2 and the u < 2 ranges. Even though evolution seemed to have a
clear directionality in either side of y ~ 2, the greater speed by which the population evolved
in the u < 2 range could indicate a stronger selective regime for slower dispersal. Being better
informed by this observation, we will follow simulations of evolution for § = 1 starting close
to u = 2. If starting with all individuals having u = 1.75, the population was evolving towards
the slowest dispersal again (Figure [5.7]c). If the initial 4 = 2, then evolution, instead of moving
to lower mobility, approached and stayed on the maximum mobility end (Figure [5.7]d). These
outcomes could strengthen our suspicions that the u < 2 promotes a different selective regime in
respect to the ¢ > 2 range, again here. Hence, in weaker competition (y = 0.02) affecting only
the death rates (6 = 1), slower dispersal was selected by starting in a lower range of mobility,
and faster dispersal was selected in a higher mobility range.
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Figure 5.8: Evolutionary equilibrium distributions of movement parameter u for various degrees
of the competition’s contribution to the death rates, §, under weak competition y, and starting
from maximum mobility allowed. The distributions are depicted vertically, where darker color,
according to the legend, denotes higher mean relative frequency of u in the bins. For each §, a
single simulation of evolution was carried out, starting with 4 = 3, and mutations were allowed
upon reaching equilibrium. Each rectangle is the temporal mean for a duration of r = 100,
sampled every ¢t = 5, after the distribution had reached a final, relatively unchanged state. The
individuals® offspring were mutating their u by a quantity drawn uniformly from the interval
(-0.05,0.05). Parameters: R = 0.1, rp0 = 1, rg0 = 0.1,y = 0.02, N(0) = 1500.

When competition was impacting only the birth rates, the evolutionary stable mobility was
the lowest, even starting the simulations with maximum mobility (Figure [5.7]a and b). The
evolutionary trajectory was passing, even slowly, the 1 > 2 range, towards lower mobility. But
this changed for the 4 > 2 range, when competition was affecting only the death rates, 6 =
1. Then, the evolutionary trajectory was not moving to lower mobility, but higher mobility
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was selected (Figure d). We could take more, intermediate values of ¢ again here, and by
starting each simulation of evolution from u = 3, we could identify a shift in the selection
towards lower mobility in the u > 2 range. Figure [5.8] shows that the shift must be found
in 6 € (0,0.125), for y = 0.02 considered here. Notice in Figure [5.8] in addition, that the
first three evolutionary equilibrium distributions after the shift in the selection of mobility (i.e.,
for § = 0.125, 0.25, 0.375) have flatter peaks, still towards the maximum of mobility. Since
the values in the distributions’ bins were temporal averages of relative frequency, the broader
peaks mean that the distributions either were broader during the simulation or they were moving
occasionally to lower mobility. In either case, this could be an indication that, as ¢ increased, the
selective force for higher mobility was getting stronger.

Again here, as in stronger competition, the same two trends were revealed. First, for a given
contribution of competition to the death rates, J, evolution in a lower mobility regime was at-
tracted stronger to the lowest mobility. By this remark we could justify: the greater speed in
evolution when the distribution was in the u < 2 range, for 6 = 0 (Figure b); and the shift in
selection between the two ranges, for 6 = 1 (Figure ¢ and d). Second, for a given mobility
regime, increasing the competition’s contribution to the death rates, lead to stronger selection for
higher mobility. By this remark we could justify: the flatter distribution around the maximum
mobility for decreasing 6, for the ¢ > 2 mobility regime (Figure [5.8)); the fatter right tail of the
u distribution for 4 < 2 (Figure a and c); and the shift in mobility selection, from lower to
higher mobility for u > 2 (Figure[5.7]b and d). Additionally, we spotted the same occurrence of
the u =~ 2 acting as a border, separating two different evolutionary behaviors. As we noted pre-
viously, for larger 9, a force acting towards the selection of faster dispersal seemed to be at play.
Thus, we could speculate that in the competition between clustering and this force, the latter
won in the 6 = 1 and > 2 setting. Having already acknowledged the inability of clustering to
elucidate on the interpretation of these outcomes, we will turn directly to the explanations based
on spatial and temporal variation. First, in this explanatory part, we will expose again the ex-
pectations and speculations appeared in Sections *{Iemporal variation|’. ’[Spatial variation|” and
"{Temporal over spatial variation|” to the measured spatial and temporal variation of non-evolving
equilibrium populations.

Beginning with temporal variation, and regarding ¢, in simulations of non-evolving popu-
lations at equilibrium, where mobility was also incorporated, generally the same positive rela-
tionship was observed as in Section ’{Temporal variation|” (Figure a, for weak competition
v = 0.02): for a given u, temporal variation was increasing with 6. But for a given J, temporal
variation was following a characteristic pattern with u (Figure[5.T1]b): starting from y = 1, it was
reaching a local maximum at y ~ 1.25, then decreasing until 4 = 1.75, and finally it was increas-
ing again, until u = 3. Thus, another intriguing pattern arose when we included mobility, and
the existence of the critical value of u ~ 1.81 for pattern formation may be at play again. Lastly,
we speculated that increasing mobility may tend to alleviate high temporal fluctuations. Here
we saw that generally temporal variation was increasing with y (Figure[5.T1]b), even though for
increasing J, and therefore for increasing temporal variation, the increase of temporal variation
with ¢ was less profound. In conclusion, even without neglecting mobility, higher contribution
to the death rates, d, was coupled by higher temporal variation. And movement by its own had
the effect of increasing temporal variation, even though its effect was weaker in temporally more
variable environments because of increased contribution of competition to the death rates, ¢.
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Figure 5.9: Clustering in respect to u for three values of the competition’s contribution to the
death rates, ¢, under weak competition y. A uniform spatial configuration has a clustering value
equal to 1. Details of the clustering’s calculation method can be found in Section *{Spatial vari-|
’. (@) 8 = 0; (b) 6 = 0.125; (¢c) 6 = 1. The error bars denote the error of the ensemble
mean. Other, common-valued parameters: «,, = 1004, R = 0.1, rp0 = 1, rgo = 0.1, y = 0.02,
N(0) = 1000.

Concerning spatial variation, we speculated that clustering and spatial variation, in terms
of Ng, should not be considered synonymous, according to their definitions. A comparison
between Figure [5.9)a, and Figure [5.11] ¢, will reveal the difference. While clustering decreased
monotonously (Figure [5.9]a), spatial variation decreased until 4 = 1.75, kept this lowest value
until 4 = 2, and then increased again (Figure m ¢, in the leftmost Subpanel, for § = 0).
For larger 9§, the monotonous decrease of spatial variation resembles the one of clustering, but
based on smaller ¢, we could say that clustering is not the same as spatial variation. The same
intriguing minimum of spatial variation located at u = 1.75 and ¢ = 2 was found and here,
and, as it was mentioned before, we will overlook it. On the other hand, we observed in Section
"[Spatial variation] that clustering and spatial variation was increasing with increasing § (Figures
[5.9] and[&-3]a, for y = 0.02, respectively). But spatial variation was not found to increase as much
as clustering with increasing ¢, in the full model (compare Figures [5.9)and [5.11]c). Comparing
the 6 = 0 with the 6 = 1 case, while spatial variation increased from around 21 to around 23
individuals, clustering increased from a value of around 2.5 to around 7.5, for u = 1. Again, the
same explanation, based on the limited range of inter-cluster distance and the pattern periodicity,
could be invoked for this behavior, as in Section {Strong competition|’.

Finally, regarding the ratio of temporal over spatial variation, in Section ‘{Temporal over|
[spatial variation]” it was shown that it follows a positive relationship with the competition’s con-
tribution to the death rates (Figure [.8] a, for y = 0.02). Based on the ratio measurements of
the full model, similar trend was observed for u = 1, which is closer to the neglected mobility
assumption (Figure [5.11] a, comparison among &, for 4 = 1). And to summarize the findings
from the comparisons of spatiotemporal variation, we could say that the measurements on the
regular system based on the Gillespie algorithm incorporating movement agreed with the mea-
surements on the simplified systems back in Sections ’{Iemporal variation|’, {Spatial variation|’
and "{Temporal over spatial variation|”: both spatial and temporal, and the ratio of variations were
increasing with increasing contribution of the competition to the death rates. Based on the pos-
itive relationship of the ratio with 6, we expect that selection will favor faster dispersers as the
death rates become more competition-dependent, under weak competition as well. Next, we will
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continue with the interpretation of the evolutionary outcomes based on the measured temporal
and spatial variation of non-evolving equilibrium populations. Having already the experience of
the explanatory way in terms of spatiotemporal variation and eco-evolutionary feedback, in this
Section we will pass in less detail from an explanation of the evolutionary outcomes presented.
Essentially, apart from the differences because of the different y, which will be discussed in Sec-
tion "|Weak-strong competition comparison|’, the same qualitative behavior was exhibited under
weak competition.
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Figure 5.10: Temporal change in the distribution of ¢ during simulations of u evolution under
weak competition (y = 0.02) affecting solely the death rates (6 = 1). The distributions are
depicted vertically, where darker color, according to the legend, denotes higher relative frequency
of u in the bins. The initial u was also the lowest u allowed: (a) u = 1.25; (b) u = 1.5; (¢)
u = 1.75. Mutations were allowed upon reaching equilibrium. The individuals’ offspring were
mutating their ¢ by a quantity drawn uniformly from the interval (-0.05,0.05). Parameters:
ke =107 R=10.1,r0 = 1, 740 = 0.1, = 0.02, 5 = 1, N(0) = 1500.

Let us begin, then, by the essential identification of the approximate value above which faster
dispersal was selected. In this setting, no departure towards faster dispersal occurred if starting
from u = 1, even for 6 = 1. First of all, notice that the maximum value of §,/5;, ~ 0.27 (Figure

.11ja, for 6 = 1 and u = 1), which is much smaller that the above 0.4 value of the respective
0 = 1 case under stronger competition. The problem is that we cannot search quite precisely the
threshold in larger 5,/5,,, since the existence of mutations at lower mobility tends to drive the
evolution to the lowest mobility. If we run evolutionary simulations, starting from, let us say,
w1 = 1.25, the lower mobility mutants in such low values of §,/5,, will take over the population
by forming clusters, and thus hide the threshold 5;/3;,. In the stronger competition setting, we
were lucky because the minimum value of ¢ = 1 we chose was the first in the § = 1 case to
have §,/5,, > 0.4. So, the trick now is to manipulate the minimum of the mobility range, so
that no mutations with lower mobility would interfere with the search of the first value of ratio
leading to departure towards the highest mobility. Thus, simulations of evolution were run with
an initial g = 1.25, 1.5, 1.75 and 2, for 6 = 1. The lowest u allowed was the same u by
which each simulation was starting. By this procedure, the first initial u at which a redirection
of selection occurred was u = 1.5 (Figure [5.10). Notice that when starting from u = 1.75 with
6 = 1 and minimum g = 1, evolution was driven to the lowest mobility (Figure ¢); while
for the same setting except that minimum g = 1.75, evolution was driven to the highest mobility
(Figure [5.10| ¢). This could be explained by the aforementioned argument, that mutants with
p < 1.75 bring greater ecological change towards lower mobility than higher mobility mutants
do for higher mobility (Figure a, for 6 = 1 and p € [1.5,2]). We are not in a position in
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the present study to draw safe conclusions regarding the fact, or coincidence, that for u = 1.5
we have the first value of the ratio above 0.4, again like in strong competition (see Figure[5.11]a,
for 6 = 1 and u = 1.5). Nevertheless, here we will care only about the value alone, and not for
any relevance it may have for the evolutionary dynamics of the redirection from slower to faster
dispersal, given the general setting of the model. As a double check, the same procedure was
tried for 6 = 0.125. And again there, by increasing the initial x4, and the minimum g allowed in
consequence, the first p at which the evolution headed to the highest mobility was u = 1.5, the
first one with 5,/5,, > 0.4, for 6 = 0.125. Hence, now we are in a position to justify the absence
of redirection of selection for 6 = 1, while on contrast it occurred under stronger competition.
Simply, the resident, equilibrium population with u = 1 creates an environment with §;/5,, < 0.4,
so that faster dispersal is negatively selected. The created mutants are selected against, and their
numbers remain only because of the generous and continuous production of mutations.
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Figure 5.11: Temporal and spatial variation of non-evolving equilibrium populations in respect
to i and 6 under weak competition. Details for the method of the spatiotemporal variation’s
calculation can be found in Section ']Measuring variation|’. (a) ratio of temporal over spatial
variation; (b) temporal variation; (c) spatial variation. The error bars denote the error of the
ensemble mean. Parameters: R = 0.1, rpo = 1, rg0 = 0.1,y = 0.02, N(0) = 1500.

Before proceeding with explanations, we have to outline the relevance that mutations have
for the evolutionary outcomes. Given the way and the size of the mutational change as it was
implemented here, the spread of the y distributions seems to have a maximum and minimum u
of around 0.5 larger and smaller than the central tendency of the distributions, if any. This is
apparent when mutations are starting after the population had reached equilibrium, and before
evolution starts to shape the distribution. For an example, look at Figure ¢, where you can
see that while the main bulk is at the initial value of u = 1.75, after almost 2 - 10° steps, the
distribution has spread at around u € (1.3,2.2). For the trajectory that started at u = 1.75 for
6 = 1 (Figure[5.7]c), we would expect that it will tend to faster dispersal, due to its high enough
5,/5sp (Figure [5.T1)a, for 6 = 1 and u = 1.75). The reason for which this did not happen can
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be derived from Figure a. In this setting, faster dispersal is expected to be selected, and
upon mutations the faster mutants are favored. But, two facts seem to constrain the growth of the
more mobile individuals: the 5,/5,, is not that large, and the impact of lower mobility mutants
on the ecological setting is greater. The asymmetry of the impact is inspired by the fact that by
decreasing y, the drop in §,/5;), is greater than the increase in §,/5,, by increasing u (Figure
a, for 6 = 1 and u € [1.25,2.25]). That could be the reason for the final positive selection of the
less mobile individuals. They alter the environment more towards their needs (the minimum of
the distribution, in Figurec, is reaching almost y = 1.3, which means cluster formation), and
then they are selected positively because of that.

In essence, the shape of §;/5,, with u, in Figure a, is similar to the respective-one of
stronger competition (Figure[5.3|a). Thus, similar evolutionary outcomes were produced, and the
explanation of stronger or weaker selection in respect to the mobility range and ¢ will not take
place again. Hereon, we will be limited only to the interpretation of the interesting trajectory
of 6 = 0, starting with 4 = 3 (Figure b). The initial population had a very high 5/,
according to the measure on non-evolving populations (Figure[5.11]a, for § = 0 and u = 3). That
is, the selection was strong towards faster dispersal. But, the change in 5,/5,, as u decreases
is relatively small. In fact, adjacent values have overlapping errors of the mean, until u = 2.
This, in consequence, means weak negative selection of the lower mobility mutants until y = 2.
The peak of the distribution drops, and it becomes flatter. The main volume of the distribution
wanders in the u € (2, 3) range. Already because of the weak selection, the §;/3;), is expected to
drop, even a little, according to Figure a. When the main bulk of the distribution happens
to move close to u = 2, this means that a respected number of lower mobility mutants will be
produced. Because of the fast production of mutations, the lowest mobility mutants can have
1 =~ 1.5. And if their numbers are adequately large, they can decrease dramatically the 5;/3;,
setting. This is apparent from the rapid decrease in 5;/5y, for decreasing u below 2 (Figure[5.TT]
a, for § = 0 and u =< 2). The rest of the story is known: the positive feedback loop gets stronger
because of the steep slope in §;/3;,, and the population attaches to the lowest mobility rapidly.

Let us now see if the measurements of variation across time and during evolution agree
with the previous interpretative attempts. In the first column of Panels (Figure [5.12] a, b and
¢), a trajectory from the setting we considered last is depicted (competition only in the birth
rates, 6 = 0, and initial 4 = 3 under weak competition). As it was described based on Figure

.11] a, the wandering of the distribution in the u € (2,3) range was followed by a decrease
in §/5,,. Notice that at the times the distribution moves closer to = 2, §;/§,, drops more,
because of a simultaneous increase in spatial and a decrease in temporal variation. Because of
the lowered §,/5,,, lower mobility mutants are not so negatively selected. The accumulation of
slower dispersers leads mainly to a faster decrease in temporal variation, and at some point the
fast shift is realized by a vast increase in spatial heterogeneity, mainly due to the formation of
clusters, and a decrease in temporal variation. In the second column of Panels (Figure d,
e and f), we are in 6 = 0.125, the first value that no departure from y = 3 was observed in this
Section (Figure [5.8). During the full expansion of the distribution because of the mutations, a
slight decrease in §;/5,, can be observed, mainly due to a decrease in temporal variation. Finally,
for even increased contribution of competition to the death rates, 6 = 1, and by starting with
1 = 2 (third column of Panels in Figure g, h and 1), evolution headed towards the fastest
dispersal. The path to the maximum of the mobility range was accompanied by a decrease in
spatial and an increase in temporal variation. Notice that, even though 5;/5;, is smaller in the
third column than in the second, the distribution at the third column after reaching the maximum
is little more peaky and concentrated to the extreme. The reason cannot be derived by this plot,
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but we saw that it could be explained because of the steeper decrease in §,/5,, with decreasing
. so that slower dispersers are stronger selected negatively (Figure[5.11]a, comparison between
0 =0.125and 6 = 0.1, for u = 3).
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Figure 5.12: Temporal change in the distribution of x4 and in the corresponding spatial and tem-
poral variation (3, and 5;, respectively) of evolving populations under weak competition, and
for three levels of the competition’s contribution to the death rates. (a), (b) and (c) 6 = 0; (d),
(e) and (f) 0 = 0.125; (g), (h) and (i) 6 = 1. The u distributions are depicted vertically, where
darker color, according to the legend, denotes higher relative frequency of u in the bins. Muta-
tions were allowed upon reaching equilibrium. The individuals’ offspring were mutating their u
by a quantity drawn uniformly from the interval (-0.05, 0.05). Details for the method of 3, and
5, calculation can be found in Section '|Measuring variation|’. Variation was calculated at every
subsequent interval of 2500 simulation steps. Parameters: «,, = 1004, R=0.1,r0 =1, rg0 = 0.1,
y =0.02, N(0) = 1500.

5.4. Weak-strong competition comparison

In the last two Sections ({Strong competition|” and ’|Weak competition|’), we investigated
the effect of the competition’s contribution to the death rates under strong (y = 0.06) and weak
(y = 0.02) competition. In this Section, we will take a look at the effect of competition intensity,
7. Initially, we will compare the findings from the simplified attempts in Sections *{Temporal vari-]
[ation]’, *{Spatial variation|” and '{Temporal over spatial variation|’, with the respective measures of
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the full model with the Gillespie algorithm. Next, an interpretation of the evolutionary outcomes
of Sections ’{Strong competition|” and {Weak competition|” will be attempted in respect to the
effect of y on the measured ratio of spatiotemporal variation of non-evolving populations with
the full model. For the latter, we will focus on two pairs of Figures which were the central focus
of this discussion (Figures [5.7] and and Figures and [5.5). These pairs will offer their
suggestions and indications on different levels, so to have a more complete picture. Of course,
each pair of equivalent Figures, is consisted by a weak and a strong competition counterpart.

Regarding temporal variation, Section ’{Temporal variation|” showed that it must have a neg-
ative relationship with competition intensity y (Figure [4.3]b). This relationship was confirmed
by the measured temporal variation of non-evolving populations by the full model (comparison
between each Subpanel of Figure b, with its respective in Figure [5.3]b): in all considered
degrees of the competition’s contribution to the death rates, §, temporal variation was lower at
the stronger competition (y = 0.06) setting. About spatial variation, again a negative relationship
with competition intensity was identified (Figure 4.5]b). And the measured spatial variation of
the full model was supporting this claim as well (comparison between each Subpanel of Figure
[5.11]c, with its respective in Figure[5.5]c). Lastly, concerning the ratio of temporal over spatial
variation, from the simplifications in Section "{Temporal over spatial variation|” it was found to
increase with increasing competition intensity y (Figure[4.8]b). And the same behavior was ob-
served from the full model, especially for lower values of u (comparison between each Subpanel
of Figure [5.T1] a, with its respective in Figure [5.5]a, but notice that in Figure [5.11] a, narrower u
range is considered).

Let us continue now with the comparison of evolutionary outcomes, with the pair of Figures
and [5.2] which will offer its indications in a rather phenomenological way. If you compare
each Panel with its equivalent, the same trend arises: stronger competition tends to relax the
selection for slower dispersal, or, equivalently, tends to enforce the selection for faster dispersal.
Figures a, and a: the stronger competition counterpart has fatter right tail. Figures
b, and b: on weaker competition the trajectory was heading to the lowest mobility, while in
stronger competition was heading to the opposite direction. Figures[5.7]c, and[5.2]c: convergence
to lower mobility for the weak competition, departure towards higher mobility under stronger
competition. Figures d, and[5.2] d: slow trajectory towards higher mobility, and fatter left
tail as soon as it arrived to the extreme, under weaker competition; while rapid evolution and
more peaked distribution to the fastest dispersal in the stronger competition setting. Thus, from
this approach we could conclude that stronger competition, y, increases the tendency for faster
dispersal selection.

Now, let us turn to the pair of Figures [5.11]and [5.5] which provides indirect indications in a
lower level, based on measurements made in equilibrium non-evolving populations. Since, ac-
cording to all the considerations we, and the literature, have acquired until now, the ratio 5,/5,
is the crucial measure for the selection of dispersal, we will focus only on Figures a, and
[B.3]a. For § = 0: larger value on lowest mobility, and larger values with steeper slope on the
higher mobility range, under stronger competition (Figure[5.5]a). For 6 = 0.5 and 1: qualitatively
similar as in the 6 = 0 case. Thus, with this comparison we have an explanation, in terms of the
opposition between temporal and spatial variation, for the patterns observed in the previous pair’s
comparison. How the shape and size of the relation of the ratio §,/5,, with u affect the selec-
tion of dispersal, has been already accounted in the last two Sections. The general conclusion,
confirming the phenomenologically-based remarks of the previous comparison, is that stronger
competition alters the ratio’s §,/5, form of relation with mobility, such that selection of faster
dispersal is encouraged.
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6. Concluding remarks

This study confirmed from a different modeling perspective, in which spatial and temporal
variation were not imposed explicitly or externally, the importance of the opposition between
temporal and spatial variation for the evolution of mobility. In specific, the basic conclusions
and contributions of the thesis were the following:

o Under this model’s setting, the main effect of increasing the value of the Lévy index u was
an increase in mobility, and hence the evolution of dispersal was tracked by the evolution-
ary changing u.

e Another component of temporal variation was recognized and judged appropriate for pur-
suing the goals of this study: the temporal variation in the neighborhood density due to
demographic/movement events.

e Based on model simplifications, it was identified that faster dispersal should be favored
under harsher survival conditions, i.e., under higher competition intensity or higher degree
of the deaths being affected by competition.

e The method by which spatiotemporal variation was measured in the complete model, and
the adoption of the eco-evolutionary point of view, were satisfactory means for explaining
the evolutionary behaviors in the simulations of evolution.

e Under similar parameter values, the pairwise competition results of [Heinsalu et al. (2013)),
concerning the superiority of species which form narrower clusters, were reproduced with
this study’s eco-evolutionary setting of simulating evolution.

e The simulations of evolution under the complete model confirmed that higher competition
intensity, or larger impact of competition to the deaths, lead to selection for faster dispersal,
because of increased temporal in respect to spatial variation.

After outlining what this study was about, let us list here what this study was not, and what
it could be. First, it is acknowledged that we considered a tiny part of the parameter space. This
study, lacking considerably a rigorous, quantitative character, could be better perceived as an
exploratory, qualitative attempt to elucidate parts of the evolution of dispersal with this model.
Additionally, it is acknowledged that this model is not to give definite answers to any of the open
questions out there. The competition kernel was discrete, the individuals totally blind without
sensing any gradient, reproduction was asexual, individuals could exist on the same spot, and
movement did not impose any cost. Still, the insight gained could be illuminating for the real
processes out there. Some questions and future perspectives could be listed: We came upon some
intriguing patterns, that would be very interesting to study in detail. For example, why spatial
variation was reaching its minimum in u =~ 2 and then increased for higher y? Additionally, we
did not consider the evolution of movement types, but only mobility in loose terms. It would
be interesting to fix diffusivity so that we could follow only the evolution of movement types,
from ballistic to Lévy to Brownian movement. Moreover, interesting would be the derivation of
analytical expressions for spatial and temporal variation, in terms of demographic or movement
parameters. We should not forget, as well, the intriguing threshold value of 5,/5,, above which
faster dispersal was found to be selected. Was it a coincidence, or does it have an analytic basis?
Finally, under the promising eco-evolutionary framework, it would be an interesting challenge
to work analytically on the evolution of dispersal in this model, under the adaptive dynamics
scheme.
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