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Abstract. Filamentous fungi contribute to ecosystem and human-induced

processes such as primary production, bioremediation, biogeochemical cycling
and biocontrol. Predicting the dynamics of fungal communities can hence

improve our forecasts of ecological processes which depend on fungal commu-

nity structure. In this work, we aimed to develop simple theoretical models
of fungal interactions with ordinary and partial differential equations, and to

validate model predictions against community dynamics of a three species em-

pirical system. We found that space is an important factor for the prediction
of community dynamics, since the performance was poor for models of ordi-

nary differential equations assuming well-mixed nutrient substrate. The models
of partial differential equations could satisfactorily predict the dynamics of a

single species, but exhibited limitations which prevented the prediction of em-
pirical community dynamics. One such limitation is the arbitrary choice of a
threshold local density above which a fungal mycelium is considered present in

the model. In conclusion, spatially explicit simulation models, able to incor-

porate different factors influencing interaction outcomes and hence dynamics,
appear as a more promising direction towards prediction of fungal community

dynamics.
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1. Introduction. Mycelium, the indeterminate growth form of a filamentous fun-
gus, is comprised of hyphae, i.e. interconnected compartments which create an
extending network via their elongation, branching and fusion [21, 23, 11]. Filamen-
tous fungi interact mainly via competition for space, since nutrients can be acquired
from the substratum [1, 28]. The main types of fungal interaction outcomes between
two heterospecific or somatically incompatible mycelia are the replacement of one
mycelium by another (via physical contact, or via chemicals from a distance), and
their deadlock, i.e. no mycelium surrenders occupied space to the other [1]. These
outcomes of spatial competition are influenced by different biotic and abiotic factors,
such as species identity, the presence of grazing inverterbrates, and environmental
temperature [1, 16, 13].

With their interaction outcomes and the consequent community dynamics, fila-
mentous fungi contribute to ecosystem and human-induced processes such as pri-
mary production, bioremediation, biogeochemical cycling and biocontrol [14, 19,
5, 20, 25]. Incorporating accurate predictions of fungal community dynamics into
ecosystem models can hence improve forecasts of such processes, e.g. in decom-
position models [18, 28]. Despite the literature on the factors influencing fungal
community dynamics, and on the importance of these dynamics on ecological pro-
cesses, only a single study with a simulation model has tested the predictability of
empirical community dynamics [17]. Since such simulation models require multi-
ple runs for inference about, e.g., the average behaviour of the modelled system,
another attempt could aim for models of ordinary differential equations (ODEs)
or partial differential equations (PDEs), which can model the average behaviour of
a system deterministically. Moreover, ODEs can model an empirical system more
simplistically, for employing the wide range of established ODE techniques. On the
contrary, PDE models can provide a more precise description of systems, possibly
leading to more accurate prediction of system dynamics. For example, the spatial
dependence which spatial PDEs can incorporate could enhance the predictability
of dynamics in the complex spatial configurations of mycelia commonly found in
empirical communities [8, 6].

To our knowledge, only seven theoretical models of interspecific interactions be-
tween filamentous fungi have appeared in the literature, a surprisingly small number
for a whole kingdom of life [12, 9, 4, 10, 3, 7, 17]. Three of these models require run-
ning simulations [12, 4, 17]. The other four are relatively detailed PDE models, and
no prediction of empirical dynamics was attempted by the authors [9, 10, 3, 7]. The
first of these PDE models is a system of two PDEs, with one PDE for the concen-
tration of an activator (in the fungal mycelia), and the other for the concentration
of a nutrient substrate [9]. The activator diffuses, increases in concentration locally
by utilising substrate, but also decays; the substrate diffuses, is captured by the
activator, and is also replenished. Without explicitly implementing replacement,
this system of two PDEs can not model replacement outcomes, but only ‘collisions’
of mycelia, i.e. collisions of travelling wave solutions. The second model implements
physiological mechanisms, where each mycelium is modelled by five PDEs, with 12
physiological parameters per modelled mycelium [10]. This PDE model is more de-
tailed than the first one of [9], but it can reproduce replacement of fungal mycelia.
The third PDE model focuses on only two fungal mycelia interacting in only one
spatial dimension [3]. The model is a system of six PDEs, three equations for each
mycelium, accounting for: the density of hyphal tips, the mycelium biomass density,
and the concentration of an internal growth-mediating substrate. Each mycelium
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needs eight parameters concerning, for example, hyphal tip speed, anastomosis rate
and active translocation cost. Thus, the model is relatively detailed, and limited
to only two mycelia on one spatial dimension. Based on the third model [3], the
fourth PDE model is also limited to two heterospecific mycelia competing on a
single spatial dimension [7].

In the present work, we developed ODE and PDE models which are simpler
than the previous models in the literature, and with the aim of predicting fungal
community dynamics, validated against dynamics from an empirical system of three
species. The basic processes of extension and replacement were incorporated in the
derivation of master equations. We took mean-field approximations for the master
equations’ first moment, to arrive to ODEs for the mean relative abundance of
species in well-mixed culture of dispersed mycelia. The non-spatial nature of the
ODEs prevented the prediction of even one-species empirical dynamics. The ODE
models were then incorporated as reaction terms in reaction–diffusion PDEs. These
spatial, PDE models were able to predict one-species empirical dynamics, but suffer
from limitations in modelling interspecific fungal interactions, as we discuss in the
last Section 4.

2. Empirical system. Three wood decay fungal species were used from the Cardiff
University culture collection: Trametes versicolor (abbreviated ‘Tv’ hereafter; strain
TvCCJH1), Vuileminia comedens (‘Vc’; strain VcWVJH1) and Hypholoma fasci-
culare (‘Hf’; strain HfDD3). In general terms of competitive ability among these
species, Vc is replaced by both Hf and Tv, whereas Hf and Tv cannot replace each
other, i.e. they deadlock [14].

Mycelia were inoculated and cultured in 22.4 × 22.4 cm dishes, at 15◦ C in
the dark, in approximately 0.5 cm thick substratum of 2% (w/v) malt agar. The
cylindrical inocula of 0.8 cm diameter were cut from newly developed cultures,
and were set with the upper part of the mycelium on the new substratum. The
inocula were removed after 2 days (d), to prevent any effects on the dynamics. Re-
isolation of different mycelial regions showed that visual inspection was adequate for
determining mycelial boundaries with unoccupied space and with heterospecifics.
Conspecific mycelia were assumed to fuse upon contact of their boundaries [26].

For testing the ability of the theoretical models to predict the dynamics of relative
occupancy, the following empirical systems were set. For one-species dynamics, each
species was inoculated alone at the centre of a 22.4 × 22.4 cm dish (Fig. 1a), and was
allowed to extend unconstrained before reaching the dish walls, or until the whole
dish was covered. For three-species dynamics, species were assigned randomly at
49 inoculation sites regularly distributed on the dish (Fig. 1b).

The bottom view of mycelial boundaries was drawn at regular time intervals
on transparencies (e.g. Fig. 1b). For measuring species occupancy in time, the
transparencies were photographed and processed with ImageJ [24], to obtain the
relative occupancy of each species at the time points of measurement (Fig. 1c).

3. Theoretical models. In this Section, simple ODE and PDE models are de-
veloped, to predict empirical community dynamics (validated against the empirical
dynamics described in Section 2). The models are based on the basic processes
of extension and replacement, according to empirical findings on filamentous fungi
(Section 1).
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(a) (b) (c)

Figure 1. Examples from the empirical system of fungal mycelia.
(a) One-species setting of an extending mycelium inoculated at
the centre of the 22.4 × 22.4 cm dish. (b) Transparency of drawn
boundaries of three-species mycelia inoculated randomly at 49 sites
indicated by the letters H (for Hf), T (Tv) and V (Vc). (c) The
transparency of the mycelial boundaries of (b), processed in ImageJ
for obtaining species relative occupancy at time t = 0 d.

3.1. One-species master equation. The empirical system of fungal mycelia on
the artificial substrate can be represented as substrate sites occupied or unoccupied
by fungus. Thus, the ODE model will describe number or relative abundance of
resource sites occupied by the different species. In contrast to the empirical system,
this simple ODE model will be non-spatial, assuming each site is neighbour to any
other site, such as in a flask with well-mixed, liquid culture of dispersed mycelia
[22]. We will assume there is a finite number of available sites, n, for occupancy in
the agitated flask. The number of resource sites occupied by species X is symbolised
with nX , with unoccupied sites considered an extra species O.

For a single species A, the total number n of resource sites in the finite domain
of a flask is the sum of the number of sites occupied by species A, nA, plus the
number of unoccupied sites, nO:

n = nA + nO. (1)

The only basic process at play will be extension of a fungus from occupied to
unoccupied resource sites in the well-mixed culture. We will exclude some kind
of death or degeneration–recycling processes because we did not observe any in
our empirical setting of rich and homogeneously distributed substrate. Species A
occupying a site sA can extend to a site sO occupied by (non)species O, resulting
in two sites occupied by A: sA + sO → 2sA. The rate of extension will increase
with the relative abundance of unoccupied sites, nO/n, which can be alternatively
expressed with Equation (1) as a decrease in the extension rate with the relative
abundance of A, nO/n = (n− nA)/n = 1− nA/n:

gA(nA) = eA(1− nA
n

). (2)

Hence, the mycelial overall extension rate gA is a function of nA, and eA is the
maximum extension rate, when nA = 0. These two extension rates are probabilities
of having an extension event per unit of time, i.e. per day in our empirical and
modelling settings (unit of measurement: d−1).
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We will follow an ‘occupation numbers point of view’ as in [27] for deriving a
master equation which is a system of ODEs. Each differential equation concerns the
rate of change of the probability Pr(nA; t) of having nA sites occupied by species
A at time t. The master equation will determine the dynamics of the discrete
probability distribution for the number of sites occupied by species A. In this one-
species setting, we will have n differential equations, since nA can take the integer
values nA = {1, 2, . . . , n}, and we hence have {Pr(1; t),Pr(2; t), . . . ,Pr(n; t)}. nA =
0 is omitted because there can be no dynamics without any fungus present initially.

To have nA sites occupied by A at time t + dt, either we had nA − 1 at time t
and minimally one of them extended to an unoccupied site during the time interval
dt, or we had nA sites at time t and none extended to an unoccupied site. Thus,
the probability of having nA at time t+ dt is

Pr(nA; t+ dt) = Pr(nA − 1; t) Pr(one of the nA − 1 extended) (3)

+ Pr(nA; t) Pr(none of the nA extended).

From Equation (2), the probability that one of the nA− 1 sites extends in the time
interval dt is gA(nA − 1)dt. Hence, the probability in Equation (3) for all nA − 1
sites is

Pr(one of the nA − 1 extended) = (nA − 1)gA(nA − 1)dt. (4)

Similarly, the probability that a site occupied by A extends to an unoccupied site
in the time interval dt is gA(nA)dt. Hence, the probability of not extending is
1− gA(nA)dt, and the respective term in Equation (3) for all nA sites is

Pr(none of the nA extended) =
(
1− gA(nA)dt

)nA
(5)

= 1− nAgA(nA)dt+O(dt2),

by Maclaurin series expansion.
Inserting Equations (4 and 5) into Equation (3), gives

Pr(nA; t+ dt) = Pr(nA − 1; t)(nA − 1)gA(nA − 1)dt (6)

+ Pr(nA; t)
(
1− nAgA(nA)dt

)
+ O(dt2).

Taking Pr(nA; t) to the left-hand side of Equation (6), dividing by dt, omitting the
higher order terms O(dt2), and taking the limit as dt→ 0, gives the master equation

dPr(nA; t)

dt
= Pr(nA − 1; t)(nA − 1)gA(nA − 1) (7)

− Pr(nA; t)nAgA(nA),

which can be rewritten, after inserting Equation (2), as

dPr(nA; t)

dt
= Pr(nA − 1; t)(nA − 1)eA(1− nA − 1

n
) (8)

− Pr(nA; t)nAeA(1− nA
n

).

3.2. One-species ODE model. Since the master equation dictates the dynamics
of the discrete probability distribution for nA, we will derive the differential equation
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for the first moment, i.e. the mean of this distribution. The mean 〈nA(t)〉 of nA(t)
in the discrete probability distribution of the master equation is

〈nA(t)〉 =

n∑
nA=1

nA Pr(nA; t). (9)

Note that because Equation (9) is a finite sum,

d〈nA(t)〉
dt

=
d
∑n

nA=1 nA Pr(nA; t)

dt

=

n∑
nA=1

nA
dPr(nA; t)

dt
. (10)

Thus, multiplying the master Equation (8) by nA, and taking the sum for all possible
nA, leads to a differential equation for its mean:

d〈nA(t)〉
dt

=

n∑
nA=1

{nA Pr(nA − 1; t)(nA − 1)eA(1− nA − 1

n
)} (11)

−
n∑

nA=1

{Pr(nA; t)n2AeA(1− nA
n

)}.

The Pr(nA − 1; t) in the first sum of the right-hand side of Equation (11) can be
rewritten as Pr(nA; t) by changing the limits of the sum from nA = {1, . . . , n} to
nA = {0, . . . , n−1}, and by omitting the nA = 0 term since it is zero. Additionally,
the limits of the sum can become nA = {1, . . . , n}, if we add and subtract a term
for nA = n. Note that this term is zero because of the n/n division:

n∑
nA=1

{nA Pr(nA − 1; t)(nA − 1)eA(1− nA − 1

n
)}

=

n−1∑
nA=1

{(nA + 1) Pr(nA; t)nAeA(1− nA
n

)}

=

n∑
nA=1

{(nA + 1) Pr(nA; t)nAeA(1− nA
n

)} − (n+ 1) Pr(n; t)neA(1− n

n
). (12)

Doing some calculations in the final sum of Equation (12), gives:

n∑
nA=1

{(nA + 1) Pr(nA; t)nAeA(1− nA
n

)}

=

n∑
nA=1

{n2A Pr(nA; t)eA(1− nA
n

)}+

n∑
nA=1

{nA Pr(nA; t)eA(1− nA
n

)}. (13)
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The final two sums in Equation (13) can replace the first sum of the right-hand side
of Equation (11):

d〈nA(t)〉
dt

=

n∑
nA=1

{n2A Pr(nA; t)eA(1− nA
n

)} (14)

+

n∑
nA=1

{nA Pr(nA; t)eA(1− nA
n

)}

−
n∑

nA=1

{Pr(nA; t)n2AeA(1− nA
n

)}.

Two of the sums in Equation (14) cancel out, leading to

d〈nA(t)〉
dt

= eA

n∑
nA=1

{nA Pr(nA; t)} − eA
n

n∑
nA=1

{n2A Pr(nA; t)}

= eA〈nA(t)〉 − eA
n
〈n2A(t)〉. (15)

Thus, the dynamics of the first moment depend on the second. In long enough
time, a fungus will occupy all unoccupied sites in any stochastic realisation, and
hence the variance of the stochastic trajectories will tend to zero, Var[nA(t)] = 0.
Since the second moment is 〈n2A(t)〉 = Var[nA(t)]+〈nA(t)〉2, approximately we have
〈n2A(t)〉 = 〈nA(t)〉2. This leads to the final equation for the first moment dynamics:

d〈nA(t)〉
dt

= eA〈nA(t)〉 − eA
n
〈nA(t)〉2. (16)

Equation (16) is in terms of mean number of sites in time, 〈nA(t)〉, and we can cast it
in terms of mean relative abundance of species A in time, A(t) = 〈nA(t)〉/n, leading
to the deterministic ODE model of logistic increase in the species mean occupancy
(see Fig. 2 for the resulting well-mixed dynamics compared to the spatial dynamics
of one-species mycelia extending on empirical dishes):

dA(t)

dt
= eAA(t)

(
1−A(t)

)
. (17)

3.3. Two-species master equation. Although the initially exponential growth
of the logistic ODE model does not agree with the quadratic-like growth in the
spatial dynamics of one-species mycelia extending on empirical dishes (Fig. 2), we
continue towards the development of two- and three-species ODE models, starting
from the master equation for two-species.

We assume the following basic processes for the two-species system: extension of
species A, extension of species B, and replacement of species B by species A (such
as Hf or Tv replacing Vc in our empirical system).

As in the one-species case of Equation (2), the extension rates of the two species
are functions of the number of sites occupied by A and B, nA and nB :

gA(nA, nB) = eA(1− nA + nB
n

), (18)

gB(nA, nB) = eB(1− nA + nB
n

). (19)
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Figure 2. One-species empirical dynamics compared to the model
dynamics from the ODE (17). Circles are for the Tv empirical
relative cover of the dish, and curves are for the relative abundance
of Tv in a well-mixed culture with the ODE model. (a) A single
Tv mycelium inoculated at the centre of a dish in the empirical
system, extending before reaching the edges of the dish. (b) Three
Tv mycelia closely inoculated at the dish centre, fusing to form
one mycelium which extended and covered the dish. The initial
conditions were equal to the relative cover of Tv on the empirical
dishes at time t = 0 d. The extension rate parameter eA ≈ 0.35
d−1.

The rate by which one site occupied by species A replaces a site occupied by B will
be a linear function of the relative abundance of B:

kA(nB) = rA
nB
n
. (20)

Again, the extension rates gA, gB , eA and eB , and the replacement rates kA and rA,
are probabilities of having an event per unit of time, i.e. per day in our empirical
and modelling settings (d−1).

For the master equation, the probability of having nA and nB at time t+ dt will
be

Pr(nA, nB ; t+ dt) (21)

= Pr(nA − 1, nB ; t) Pr(one of nA − 1 extended)

+ Pr(nA, nB − 1; t) Pr(one of nB − 1 extended)

+ Pr(nA − 1, nB + 1; t) Pr(one of nA − 1 replaced one of nB + 1)

+ Pr(nA, nB ; t) Pr(none of nA extended) Pr(none of nB extended)

· Pr(none of nA replaced one of nB).
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By treating Equations (18–21) as in the steps with Equations (4–7) for the one-
species master equation, we can derive the master equation for the two species:

dPr(nA, nB ; t)

dt
(22)

= Pr(nA − 1, nB ; t)(nA − 1)eA(1− nA − 1 + nB
n

)

+ Pr(nA, nB − 1; t)(nB − 1)eB(1− nA + nB − 1

n
)

+ Pr(nA − 1, nB + 1; t)(nA − 1)rA
nB + 1

n

− Pr(nA, nB ; t)[nAeA(1− nA + nB
n

) + nBeB(1− nA + nB
n

) + nArA
nB
n

].

3.4. Two- and three-species ODE models. The first moments for the occu-
pancy of the two species are:

〈nA(t)〉 =

n∑
nA=1

n∑
nB=1

nA Pr(nA, nB ; t), (23)

〈nB(t)〉 =

n∑
nA=1

n∑
nB=1

nB Pr(nA, nB ; t). (24)

Following the same approach as in Equations (10–15) for the quantities in Equations
(23 and 24), we can derive the differential equations for the first moment dynamics
from the master Equation (22):

d〈nA(t)〉
dt

= eA〈nA(t)〉 − eA
n
〈n2A(t)〉+ (rA − eA)〈nAnB〉, (25)

d〈nB(t)〉
dt

= eB〈nB(t)〉 − eB
n
〈n2B(t)〉 − (rA + eB)〈nAnB〉. (26)

Since species A will eventually replace B in long enough time of any stochastic
realisation, the variance of each species will tend to zero, and the covariance of A–B
can be neglected. By adopting the mean-field approximations 〈n2A(t)〉 = 〈nA(t)〉2,
〈n2B(t)〉 = 〈nB(t)〉2, and 〈nA(t)nB(t)〉 = 〈nA(t)〉〈nB(t)〉, Equations (25 and 26) can
be written as

d〈nA(t)〉
dt

= eA〈nA(t)〉 − eA
n
〈nA(t)〉2 + (rA − eA)〈nA(t)〉〈nB(t)〉, (27)

d〈nB(t)〉
dt

= eB〈nB(t)〉 − eB
n
〈nB(t)〉2 − (rA + eB)〈nA(t)〉〈nB(t)〉. (28)

Equations (27 and 28) are in terms of mean number of sites in time, 〈nA(t)〉 and
〈nB(t)〉, and we can cast them in terms of mean relative abundance in time, A(t) =
〈nA(t)〉/n and B(t) = 〈nB(t)〉/n:

dA(t)

dt
= eAA(t)

(
1−A(t)−B(t)

)
+ rAA(t)B(t), (29)

dB(t)

dt
= eBB(t)

(
1−A(t)−B(t)

)
− rAA(t)B(t). (30)

For species A, per capita extension is reduced with increasing relative abundance of
A or B, and per capita replacement is increased with increased relative abundance of
B. For species B, per capita extension is reduced with increasing relative abundance
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of A or B as well, and its per capita replacement is increased with increased relative
abundance of A.

From the two-species ODE model of Equations (29 and 30), we can write a three-
species ODE model in which species A and B can replace species C, and species A
and B cannot replace each other, as in the empirical system (Section 2):

dA(t)

dt
= eAA(t)

(
1−A(t)−B(t)− C(t)

)
+ rAA(t)C(t), (31)

dB(t)

dt
= eBB(t)

(
1−A(t)−B(t)− C(t)

)
+ rBB(t)C(t), (32)

dC(t)

dt
= eCC(t)

(
1−A(t)−B(t)− C(t)

)
−
(
rAA(t) + rBB(t)

)
C(t). (33)

3.5. One-species PDE model. The one-species ODE model assuming well-mixed
conditions could not capture the quadratic-like growth attributed to the effect of
space on the dynamics of relative cover or abundance (Fig. 2). Therefore, we can use
the one-species ODE model of Equation (17) for a spatial, one-species PDE model
in two spatial dimensions, x and y. We cast the model in 2-D since data from the
empirical system were of 2-D mycelial boundaries (e.g. Fig. 1b,c). The ODE model
of Equation (17) determines the logistic increase in the occupancy of resource sites
of a species A. Equivalently in the PDE model, we will assume that the density
A(x, y, t) of a mycelium at the x, y point in 2-D space grows logistically in time t
(density of species A will be shortly symbolised as A hereafter). A mycelium attains
its maximum density, A = 1, with growth rate εA (d−1). Additionally, the mycelium
diffuses with diffusion coefficient δA (cm2 d−1). This diffusion can be interpreted as
the random walk which hyphae follow during extension at the mycelial periphery
[2]. The resulting PDE model is the Kolmogorov, Petrovskii, Piskunov and Fisher
equation [29]:

∂A

∂t
= εAA

(
1−A

)
+ δA

(∂2A
∂x2

+
∂2A

∂y2
)
. (34)

Since the empirical dish has closed boundaries, we assumed that ∂A/∂x = 0 and
∂A/∂y = 0 orthogonally to the boundaries (Neumann boundary conditions). The
modelled dish was a square with sides of 22.4 cm, similarly to the empirical dish
dimensions (Fig. 1a).

Starting from an initial density of species A decaying exponentially in the plane,
the extending mycelium’s boundary attains a constant speed of front cA = 2

√
εAδA

[29]. We will throughout fix the ratio εA/δA = 125 cm−2, to have sufficiently
steep initial densities at the inocula and at the propagating fronts [29]. Since the
boundary extension rates of species can be known from the empirical system, i.e. cA
is known, and assuming εA/δA = 125 cm−2, we can calculate the parameters εA and
δA for a species A. Such parameter estimation appeared satisfactory for one-species
dynamics of relative cover with the PDE model, both for the single Tv mycelium
(Fig. 3a), and for the three mycelia extending to cover the whole dish (Fig. 3b).
Note that to estimate the relative mycelial cover we had to arbitrarily set a density
threshold above which a mycelium was considered present locally. A mycelium was
assumed present when its density A > 0.01. The relative cover in the PDE solution
was estimated by Monte Carlo integration of mycelial presence in space.

3.6. Three-species PDE model. The PDE model for three species will follow
from the three-species ODEs (31–33). Species A and B can replace C with local
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Figure 3. One-species empirical dynamics compared to the model
dynamics with the one-species PDE (34). Circles are for the Tv
empirical relative cover of the dish, and curves are for Tv from the
PDE model. (a) A single Tv mycelium inoculated at the centre of
a dish in the empirical system (inset is the PDE model’s solution
at t = 12 d), extending before reaching the edges of the dish (as
in Fig. 2a). (b) Three Tv mycelia closely inoculated at the dish
centre (inset is a numerical solution of the PDE model at t = 12
d), fusing to form one mycelium which extended and covered the
dish (as in Fig. 2b). The PDE model for Tv had initial conditions
similar to the empirical setting, with growth rate εA = 2.16 d−1,
and diffusion coefficient δA = 0.017 cm2 d−1. It was assumed that
a mycelium is present when its density A > 0.01. The relative cover
in the PDE solution was estimated by Monte Carlo integration of
the mycelial presence (the curve in each panel is 95% confidence
region of the mean relative cover in the PDE solution from 100
Monte Carlo integrations).

replacement rates ρA and ρB (d−1). The rest of the parameters for a species X have
been introduced in the one-species PDE model: growth rate of X, εX (d−1), and
diffusion coefficient of X, δX (cm2 d−1). The resulting model equations are:

∂A

∂t
= εAA

(
1−A−B − C

)
+ ρAAC + δA

(∂2A
∂x2

+
∂2A

∂y2
)
, (35)

∂B

∂t
= εBB

(
1−A−B − C

)
+ ρBBC + δB

(∂2B
∂x2

+
∂2B

∂y2
)
, (36)

∂C

∂t
= εCC

(
1−A−B − C

)
−
(
ρAA+ ρBB

)
C + δC

(∂2C
∂x2

+
∂2C

∂y2
)
. (37)

Again, since the empirical 22.4 × 22.4 cm dish has closed boundaries, we assumed
for any species X that ∂X/∂x = 0 and ∂X/∂y = 0 orthogonally to the boundaries
(Neumann boundary conditions). The PDE model’s dynamics could not agree with
the empirical community dynamics (Fig. 4, with Hf represented by species A, Tv
by B, and Vc by C). The three-species PDE model’s parameter values used to test
the predictability of empirical dynamics are given in Fig. 4. The initial conditions
for Fig. 4 were exponentially decaying densities of the species at the same locations
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Figure 4. Prediction of the three-species empirical community
dynamics with the PDEs (35–37). The data points are for the
empirical relative cover of the species in time, and the curves are
for the PDE model. The inset shows the PDE numerical solution
at time t = 40 d, with initial configuration at t = 0 d as in Fig.
1c. Colour–point (of each species): red–circle (Hf), cyan–square
(Tv), and blue–× (Vc). The PDE model had initial conditions
similar to the empirical setting, with the following parameter values
(species A was Hf, B was Tv, and C was Vc): εA = 0.78 d−1,
εB = 2.16 d−1, εC = 1.14 d−1, δA = 0.0062 cm2 d−1, δB = 0.017
cm2 d−1, δC = 0.0091 cm2 d−1, ρA = 0.22 d−1, and ρB = 0 d−1.
Local extension and replacement rates were taken from the mean
boundary extension and replacement rates in the empirical dishes,
as for the extension in the one-species PDE. It was assumed that a
mycelium is locally present when its density is greater than 0.5. The
relative cover in the PDE solution was estimated by Monte Carlo
integration of the mycelial presence (the curves are 95% confidence
regions of the mean relative cover in the PDE solution from 100
Monte Carlo integrations).

as the centers of the inoculated mycelia at the initial state of the empirical dish at
measurement time t = 0 d (Fig. 1c).

4. Discussion. The aim of this work was the development of simpler ODE and
PDE models, in an attempt to theoretically predict fungal community dynamics un-
der a simple laboratory setting. The ODE model could not predict even one-species
dynamics. The one-species PDE model was in good agreement with the empirical
dynamics, but its predictive ability for the three-species community dynamics ap-
peared poor. We hereafter discuss this overall poor performance attributed to the
underlying assumptions and nature of the models.
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We found that space is an important factor in predicting fungal dynamics with
our simple models. It is apparent from the logistic form of the ODE (17) that the re-
sulting well-mixed dynamics are different from the spatial dynamics even of a single
mycelium extending on an empirical dish (Fig. 2a). The spatial dynamics of empir-
ical relative cover was of quadratic form in the setting of a single mycelium, since
we essentially had a disk-like mycelium extending its radius linearly in time. On
the contrary, the dynamics in the well-mixed culture of the ODE model tend to be
exponential initially, as long as the relative abundance A(t) is relatively small. The
same difference in dynamics is apparent and in another example of three Tv mycelia
which fuse and cover the whole empirical dish (Fig. 2b). Nevertheless, we went on
to develop a two- and three-species ODE model, which helped in the development
of the corresponding PDE models implementing spatial processes. Compared to the
non-spatial ODE model for one species, the one-species PDE model exhibited good
predictive ability against both empirical settings (Fig. 3a,b).

We additionally found that a PDE model of fungal growth and interactions un-
avoidably suffers from the arbitrary choice of a threshold density which determines
mycelial presence. Regarding the initial conditions for the one-species PDE model,
all simulated inocula had exponentially decaying density, but we faced an issue
when dealing with more than one species. Since in the three-species PDE model we
additionally had the replacement rate parameters, we first estimated the extension
parameters as in the one-species PDE model. We then assumed that the propagat-
ing front of a species X replacing another attains a constant speed c = 2

√
ρXδX

[29]. The diffusion coefficient δX was estimated with the extension rates, and we
could estimate the replacement rate because the rate of boundary replacement was
known from the empirical system. In this way though, the ratio ρX/δX < 125
cm−2, which leads to less steep fronts during replacement. The less steep replace-
ment fronts result in difficulties estimating the relative cover of species, since the
arbitrary threshold for mycelial presence must be increased. Thus, the arbitrary se-
lection of the threshold above which a model mycelium is considered locally present,
for estimating the model relative cover as in the empirical dish, is an unsatisfactory
and likely unavoidable feature of the PDE models. This is particularly significant
when the model is used to predict empirical community dynamics which have been
recorded in a binary form, i.e. presence or absence of mycelium in each spatial
location [17]. If the model mycelia have steep enough boundaries, the prediction
of relative cover might be less sensitive to the value of this threshold, although the
threshold needed considerable adjustment to attain satisfactory predictions even in
the one-species settings.

The PDE approach revealed some additional issues. Setting exactly the same
initial conditions as in the empirical setting was difficult because the exponentially
decaying densities of the model mycelia could not be initialised exactly, to match
the empirical relative cover of the species in each inoculum at t = 0. Moreover,
due to the reaction–diffusion nature of the PDEs, it is challenging to measure and
parameterise the PDE processes of reaction (mycelial local growth) and diffusion
(extension and replacement). Last but not least, there is no way to identify distinct
model mycelia of a species with one PDE, and hence it is difficult to extend the
present PDE models by relating the extension and replacement rates with, e.g.,
the individual mycelium cover which has been shown to influence the interaction
outcomes and the theoretical predictions of empirical community dynamics [15, 17].
An alternative approach would be to model each mycelium with a separate PDE,
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but this would lead to more involved models, such as previous PDE models on
interspecific fungal interactions [9, 10, 3, 7].

In [10], a detailed model with physiology-related parameters has been developed,
in which each mycelium is described by a PDE system. It is apparent that this
model would be more challenging to parameterise and solve in order to predict em-
pirical community dynamics of multiple mycelia of different species, in comparison
to the present PDE model. One way to circumvent these parameterisation and
computation challenges was followed in other PDE models [3, 7], in which space
is reduced to one dimension (1-D), so that mycelia interact on a line. To predict
empirical community dynamics, this model must be generalised to 2-D and 3-D,
likely making it computationally expensive as well. Lastly, [9] modelled interacting
mycelia as local concentrations of activator responsible for converting local concen-
trations of substrate to biomass with a reaction–diffusion system of PDEs. Due to
the nature of this activator–substrate model, there is no way for one mycelium to
replace another. Adding appropriate processes for reproducing replacement would
lead to a more involved model, limiting the simulation of large enough spatiotem-
poral scales. Given these limitations, and the issues identified with our simple PDE
models, PDE modelling and prediction of empirical community dynamics can be
expected to be challenging for realistic systems of multiple mycelia from different
species.

In conclusion, ODE models assuming well-mixed resources, and PDE models with
their specific features, appeared unable even under our simple empirical setting to
predict empirical community dynamics (for a summary of features and performance,
see Table 1). Despite their lack of stochasticity and their liability to mathematical
analysis, our differential equation models display inherent properties which would
not allow them to model and parameterise fungal interactions in space in a plausible
way. On the contrary, we believe that spatial simulation models, such as cellular
automata or individual-based models [12, 4, 17], able to incorporate different factors
influencing interaction outcomes and hence dynamics, appear as a promising direc-
tion for improved prediction of fungal community dynamics [17]. A workaround for
differential equation models would be to add more details and levels in an ODE or
PDE model, and perhaps this is the reason that previous differential equation mod-
els for fungi are more detailed [9, 10], or with reduced number of spatial dimensions

Table 1. Summary of the features and performance of the models
considered in the present work.

Model Advantages Disadvantages Predictability

ODE
1. Simplicity
2. Determinism
3. Math. liability

1. Non-spatial
1. Low for even
one-species

PDE
1. Spatial
2. Determinism
3. Math. liability

1. Arbitrary mycelial
presence (density threshold)
2. Challenging set-up of exact
initial conditions
3. Challenging measurement–
parameterisation
4. Cannot model each
mycelium separately

1. High for
one-species
2. Low for
three-species
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[3, 7]. As a consequence of the details implemented though, such models would be-
come computationally heavier to solve for larger spatial and temporal scales which
are characteristic at the level of empirical fungal communities.
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