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Abstract
1.	 Individual-level traits mediate interaction outcomes and community structure. It 

is important, therefore, to identify the minimum number of traits that characterise 
ecological networks, that is, their ‘minimum dimensionality’. Existing methods for 
estimating minimum dimensionality often lack three features associated with in-
creased trait numbers: alternative interaction modes (e.g. feeding strategies such 
as active vs. sit-and-wait feeding), trait-mediated ‘forbidden links’ and a mechanis-
tic description of interactions. Omitting these features can underestimate the trait 
numbers involved, and therefore, minimum dimensionality. We develop a ‘mini-
mum mechanistic dimensionality’ measure, accounting for these three features.

2.	 The only input our method requires is the network of interaction outcomes. We 
assume how traits are mechanistically involved in alternative interaction modes. 
These unidentified traits are contrasted using pairwise performance inequalities 
between interacting species. For example, if a predator feeds upon a prey spe-
cies via a typical predation mode, in each step of the predation sequence, the 
predator's performance must be greater than the prey's. We construct a system 
of inequalities from all observed outcomes, which we attempt to solve with mixed 
integer linear programming. The number of traits required for a feasible system of 
inequalities provides our minimum dimensionality estimate.

3.	 We applied our method to 658 published empirical ecological networks includ-
ing primary consumption, predator–prey, parasitism, pollination, seed dispersal 
and animal dominance networks, to compare with minimum dimensionality es-
timates when the three focal features are missing. Minimum dimensionality was 
typically higher when including alternative interaction modes (54% of empirical 
networks), ‘forbidden interactions’ as trait-mediated interaction outcomes (92%) 
or a mechanistic perspective (81%), compared to estimates missing these features. 
Additionally, we tested minimum dimensionality estimates on simulated networks 
with known dimensionality. Our method typically estimated a higher minimum 
dimensionality, closer to the actual dimensionality, while avoiding the overestima-
tion associated with a previous method.
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1  | INTRODUC TION

Ecological networks are structured by different forces, including dis-
persal, habitat filtering processes and species interactions (Bartomeus 
et al., 2016). Interaction outcomes are determined by the relative per-
formance of each organism's traits, that is, whether one individual suc-
cessfully exploits another (Bartomeus et al., 2016; Pichler et al., 2020). 
For example, a nectarivory outcome can depend on the length of a 
nectarivore's mouth part compared to the depth of the plant's corolla 
tube. Thus, the comparison of trait-mediated performance between in-
teracting exploiters and resources underlies interaction outcomes and, 
subsequently, community structure (Arnold, 1983). Here, we develop 
a method which leads backwards from the observed interaction out-
comes to an estimate of the minimum number of traits involved in that 
type of interaction, which we term ‘minimum dimensionality’.

Knowing the minimum dimensionality for a set of interaction 
outcomes focusses our investigations on which traits underpin com-
munity structure (Eklöf et al., 2013). A set of interaction outcomes 
can be represented by a network (Delmas et al., 2019), illustrating 
which organisms achieve success in their interactions. They can be 
represented as unipartite networks, where all participants are in-
cluded in a single group, and interactions occur between any group 
member, for example, a food web; or bipartite networks, where 
participants are assigned to either of two groups, and interactions 
can occur between different groups, for example, a plant–pollinator 
network. Estimating the minimum dimensionality of such networks 
before deciding how many traits to investigate can prevent the omis-
sion of important traits. More accurate prediction of interaction out-
comes can then be made by combining information on the minimum 
number of necessary traits with appropriate biological knowledge 
and methods to investigate the contribution of specific traits (Pichler 
et  al.,  2020). Minimum dimensionality can also inform theoretical 
network models about the minimum number of trait axes which have 
to be included for the reproduction of realistic networks.

Since interaction networks are often characterised by traits, 
accurately estimating minimum dimensionality will improve our 
understanding of interaction outcomes. Here, we combine three 
relevant features for the first time, which we predict will increase 
the estimated minimum number of traits involved in interactions. 
First, resources can be successfully exploited via alternative strat-
egies, which we term ‘interaction modes’. For example, flowering 

plants use visual or olfactory signals to achieve pollination (Schiestl 
& Johnson, 2013), and zooplankton species exhibit feeding modes 
such as active predation and filter feeding (Kiørboe,  2011). These 
different trait combinations can modify the minimum dimensional-
ity. Second, failure to exploit a resource can be considered a trait- 
mediated outcome of interaction, that is, a ‘forbidden link’ or ‘forbidden  
interaction’ (Jordano et al., 2003). Here, we assume that two organ-
isms interact given their inclusion in the network, even if they never 
actually meet, for example, through temporal mismatch. Thus, traits 
involved in failures can also be included, which may differ from traits 
involved in successes. Third, to successfully exploit a resource via 
a given mode, an exploiter may have to succeed in different ‘tasks’, 
each employing different traits. For instance, a predator must suc-
ceed in all tasks of the predation sequence: encounter, detect, iden-
tify, approach, subjugate and consume a prey (Endler, 1991).

Existing methods for estimating minimum dimensionality lack at 
least one of these three features. The minimum dimensionality method 
of Eklöf et al. (2013) estimates the minimum number d of dimensions 
such that the trait values of each exploiter's resources lie in a contiguous 
volume of a d-dimensional space (also applied to each resource's ex-
ploiters). Alternative interaction modes are not considered because all 
d dimensions act in conjunction to determine exploitation. Additionally, 
each dimension potentially accounts for multiple traits. Thus, although 
their method tells about the niches of the exploiters and resources, it 
does not address the issues of alternative interaction modes and tasks 
(see an illustrative example in Figure  1). Ignoring interaction modes 
and tasks places this method towards the phenomenological end of a 
phenomenological–mechanistic continuum, where we consider mech-
anistic approaches in a proximate (ecologically motivated) rather than 
an ultimate (evolutionarily motivated) sense. Dalla Riva and Stouffer 
(2016) adopted a more mechanistic approach to minimum dimension-
ality, with a simple trait space representation for trophic interactions. 
They explicitly modelled interaction network structure, comparing 
paired exploiter–resource trait values. However, Dalla Riva and Stouffer 
(2016) model interactions via a single interaction mode; the task out-
comes act additively from each corresponding exploiter–resource trait 
pair comparison. Finally, corresponding to forbidden links, it is common 
for behavioural studies to employ predictor traits to explain only the 
observed dominance events in a system, that is, only the success out-
comes (Chase & Seitz, 2011). Such attempts can overlook relevant traits 
which might contribute only to the interaction failure outcomes.

4.	 Our method can reduce the risk of omitting traits involved in different interaction 
modes, in failure outcomes or mechanistically. More accurate estimates will allow 
us to parameterise models of theoretical networks with more realistic structure at 
the interaction outcome level. Thus, we hope our method can improve predictions 
of community structure and structure-dependent dynamics.

K E Y W O R D S

cyclic rock–paper–scissors intransitive game, food web intervality, multilayer ecological 
networks, mutualism, niche space, phenotype space, social networks, trophic interactions
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We developed a novel method providing a different view on in-
teraction networks by combining alternative interaction modes, 
trait-mediated failures and mechanistically based tasks, in a minimum 
dimensionality measure. Our ‘minimum mechanistic dimensionality’ 
measure can be applied to a broad range of ecological networks, in-
cluding animal dominance, predator–prey, primary consumption, pol-
lination, parasitism and seed dispersal networks. We investigated how 
our minimum dimensionality estimate compares with previous ap-
proaches across a range of empirical networks: under the assumption 
of alternative interaction modes compared to a single mode; with fail-
ure outcomes taken into account instead of omitted; and under a more 
mechanistic perspective compared to the minimum dimensionality 
under the more phenomenological, niche approach of Eklöf et al. (2013). 
We go on to estimate minimum dimensionality on simulated networks 
with a known underlying number of dimensions. Therefore, we test for 
potential underestimation of minimum dimensionality across different 
scenarios which could lead to the omission of key traits and mecha-
nisms underlying interactions and community structure.

2  | MATERIAL S AND METHODS

We illustrate our approach with an empirical example of cyclic spa-
tial replacement among three competing marine invertebrates. While 
the minimum dimensionality of this intransitive network equals one 
dimension following Eklöf et al.'s (2013) method, since each exploiter 
(resource) has a single resource (exploiter), our method estimates two 
dimensions, providing a useful illustrative example. We describe the 
interactions in the context of exploiter and resource roles, going on 

to define and calculate the minimum mechanistic dimensionality of 
the network using inequalities. We then describe how we compared 
competing minimum dimensionality estimates across 658 empirical 
networks—including social hierarchies, mutualistic networks and 
food webs—and on simulated networks of known dimensionality.

2.1 | Minimum mechanistic dimensionality: 
An overview

Jackson and Buss (1975) described the cyclic spatial replacement of 
three encrusting marine invertebrates: ectoproct species Stylopoma 
spongites (player A) replaces sponge species Tenaciella sp. (player B); 
Tenaciella replaces the sponge Toxemna sp. (player C), which in turn 
replaces the ectoproct player A. In our framework, a player (indi-
vidual or species) can adopt the role of an exploiter, a resource or 
both. In the marine invertebrates example, we consider any spe-
cies both exploiter and resource of the other species, representing 
the observed replacement outcomes of spatial competition with a 
unipartite network (Figure 1). Exploiters possess traits involved in 
achieving exploitation, whereas resources possess traits working 
against exploitation. For task success, an exploiter's performance 
in a given trait, termed ‘power’, must be higher than the resource's 
performance in a corresponding trait, called ‘toughness’ (taken from 
the creature combat rules of the card game Magic: The Gathering® 
in Garfield,  2020). Exploiter and resource are challenged in one 
trait ‘dimension’ of their phenotype space, where the correspond-
ing power–toughness trait performance is directly compared to 
determine who succeeds in that task. Using Boolean logic terms, 

F I G U R E  1   Explaining the observed competitive outcomes in an empirical rock–paper–scissors system of spatial replacement in three 
marine invertebrates. Each species was considered exploiter and resource of the others, possessing a power–toughness trait pair per task. 
We illustrate three minimal explanations for the observed outcomes: a one-dimensional mode is mechanistically impossible, presuming a 
single trait pair for a single task, that is, one dimension; the other two attempts are feasible, requiring two trait pairs in two tasks, that is, 
two dimensions. We indicate hypothetical tasks, and power–toughness trait scores in arbitrary units of performance. The indicative power–
toughness values demonstrate that only the two-dimensional minimal explanations are mathematically feasible
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interaction modes can be represented as OR-associated clauses of 
AND-associated tasks (see examples of one two-dimensional mode 
and two one-dimensional modes in Figure 1). In logic, any structure 
of logical statements can be expressed in this ‘disjunctive normal 
form’, which we term the ‘interaction form’, providing a systematic 
description of how interactions occur.

The only input our method requires is the set of observed inter-
action outcomes. We then define an interaction form describing the 
number of interaction modes which produced these outcomes, with 
each mode having a specific number of tasks. Since our aim is a min-
imum dimensionality estimate, we start with the simplest interaction 
form of a single task. In our example, we assumed that interactions oc-
curred via the destructive overgrowth of a rival invertebrate. For this 
task, a single pair of opposed, exploiter–resource power–toughness 
traits is assumed for all species. For example, the body height of the 
invertebrates when extending to an adjacent rival could be a trait for 
the power to overgrow destructively, and their body height when de-
fending against overgrowth by rivals could be a trait for the toughness 
against destructive overgrowth. We then confront this trait pair in a 
system of inequalities, to satisfy the observed task successes and fail-
ures which correspond to the observed outcomes for this single-task 
interaction form. For task successes, the power of a winning exploiter 
must be greater than the toughness of a defeated resource, for exam-
ple, the exploiter's body height must be higher than the defender's. 
For task failures, the power of a losing exploiter must be less than or 
equal to the toughness of an undefeated resource. In our example, the 
resulting system of six inequalities creates a cyclic sequence of ever- 
increasing power–toughness scores (the impossible ‘one 1-dimensional  
mode’ in Figure 1). Thus, it is impossible to explain the observed out-
comes in this unipartite graph if we presume that interactions oc-
curred via a one-dimensional interaction mode of a single task.

Our framework provides two alternative minimal mechanistic ex-
planations for the emergence of this rock–paper–scissors network. 
First, we can find feasible power–toughness scores if we add a sec-
ond task, that is, another pair of power–toughness traits in the same 
mode (minimal explanation I in Figure  1). We explain the failure of 
players A and B as failure in the first task (failure in overgrowth), and 
the failure of C as failure in the second task (failure to destroy the 
rival, even if C can overgrow B). Alternatively, we can find solutions if 
we add a second interaction mode with one task, that is, another pair 
of power–toughness traits in a new one-dimensional mode (minimal 
explanation II in Figure 1). In that case, A and B achieve success via the 
first mode (destructive overgrowth), and C achieves success via a sec-
ond mode (allelochemical elimination). Since the addition of a second 
task (power–toughness trait pair) leads to feasible power–toughness 
scores under both minimal explanations, the minimum mechanistic di-
mensionality of the empirical network equals two dimensions in both 
cases. This result, combined with biological insight from Jackson and 
Buss (1975), suggests that minimal explanation II is the more plausi-
ble one, since player A replaces B via overgrowth, player B replaces C 
via overgrowth, but player C replaces A via toxic effects. Appendix S1 
presents the complete systems of inequalities for this network under 
minimal explanations I and II, following the details presented next.

2.2 | Minimum mechanistic dimensionality: 
Formulating the inequalities

As illustrated above (Figure 1), the mechanistic explanation of the 
interaction outcomes in a network might require more than one pair 
of opposed exploiter–resource trait dimensions. One method to find 
this minimum number of trait dimensions is by attempting to solve 
a system of inequalities. If the system of inequalities is impossible, 
a simple strategy is to increase the number d of dimensions by one, 
and retry (illustrated with pseudocode in Figure  2). Our minimum 
mechanistic dimensionality estimate is, therefore, the minimum 
d ≥ 1 for a feasible system of inequalities. In the marine invertebrates 
example, there were two types of minimal explanation: additional 
trait pairs belonging to the same interaction mode (minimal explana-
tion I); or belonging to other, independent, one-dimensional modes 
(minimal explanation II). We will illustrate these two extreme expla-
nations, although tasks could be distributed to interaction modes in 
other ways for cases requiring more than two tasks.

When a new task is added to a single mode, permitting feasibil-
ity of the system of equalities, the d exploiter–resource trait pairs 
(dimensions) must be involved in the same mode (minimal explana-
tion I, Figure 1). On the one hand, an observed success of exploiter 
A against resource B must be the result of success in all tasks (e.g. 
player A succeeds in both overgrowing and destroying B in Figure 1). 
Specifically, the power PA ,i ≥ 0 of exploiter A in any trait pair i must 
be greater than the toughness TB,i  ≥  0 of resource B in that trait 
pair: PA ,i > TB,i. Since each trait pair i appears only in one task in our 

F I G U R E  2   Pseudocode for estimating the minimum mechanistic 
dimensionality of an ecological network, from the observed 
outcomes under minimal explanations I and II
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current formulation, we use the same index i for both trait pairs and 
tasks. If success requires more than the marginal superiority of the 
exploiter's power, a superiority threshold can be added, tA ,B,i  >  0, 
making the task success requirement:

On the other hand, the observed failure of exploiter A against re-
source B must be the result of failure in at least one task (e.g. player 
C failing at task 2 against B in Figure 1). We can use a binary vari-
able as an indicator of failure in trait pair i, fA ,B,i (Williams, 2013). If 
fA ,B,i = 1, then exploiter A fails against resource B in trait pair i; other-
wise, fA ,B,i = 0, representing exploiter success in the task. Finally, we 
include bounds for the power–toughness differences for computa-
tional efficiency (Williams, 2013): a sufficiently negative lower bound 
m of the exploiter's power inferiority in case of task failure; and a 
sufficiently positive upper bound M of the exploiter's power superi-
ority in case of task success. Here, we set m = −200 and M = 200, but 
these limits were not reached in any of the empirical and simulated 
networks we considered. Thus, for an observed failure, the following 
pair of inequalities must be satisfied in any trait pair i:

With an extra inequality for the observed failure, we can force at least 
one of the binary indicator variables to equal one, that is, failure in at 
least one task:

With a task failure in trait pair i (fA,B,i = 1), inequality (2) is the task fail-
ure requirement and inequality (3) is the lower bound for the exploit-
er's power inferiority. With a task success (fA,B,i = 0), inequality (2) gives 
the upper bound for the exploiter's power superiority and inequality 
(3) becomes a success requirement.

Adding a new one-dimensional mode that creates a feasible sys-
tem of inequalities (minimal explanation II, Figure  1), each of the d 
pairs of opposed exploiter–resource traits must be involved in a differ-
ent mode. Again here, each trait pair appears only in one mode j, so we 
use the same index j for both trait pairs and modes. On the one hand, 
the observed failure of any exploiter A against any resource B must be 
the result of failure in any mode j of the d modes (e.g. player A failing 
via both overgrowth and allelopathy against C in Figure 1):

On the other hand, the observed success of exploiter A against re-
source B must come from success via at least one mode (e.g. player 
C replacing A via allelopathy in Figure 1). We now use a binary vari-
able, sA,B,j, to indicate success via mode j. Given the same bounds as in 

minimal explanation I, the following pair of inequalities must be satis-
fied to indicate exploiter success in any mode j:

With an extra inequality for the observed success, we can force at least 
one of the binary indicator variables to equal one, that is, exploiter suc-
cess occurs via at least one interaction mode:

A complete system of inequalities takes into account all ob-
served successes and failures for all possible exploiter–resource 
pairs (Figure 2). Such systems of linear inequalities, with continuous 
trait values and integer indicator variables, can be formulated and at-
tempted to be solved as mixed integer linear programming problems 
(Williams,  2013). In both minimal explanations (I and II), minimum 
mechanistic dimensionality is the minimum d leading to a feasible 
system of inequalities.

2.3 | Minimum dimensionality of empirical networks

We applied our method to 658 empirical systems, covering six 
different types of ecological networks: animal social dominance 
networks, food webs excluding basal species, basal–consumer in-
teractions, plant–pollinator, host–parasite and seed dispersal net-
works (Appendix S1). By assuming adequate sampling effort (e.g. no 
observed failures due to rarity), we computed five dimensionality 
measures (Appendix S1). Four of the measures were based on our 
framework: (a) a single, potentially multidimensional mode; (b) one 
or more one-dimensional modes; (c) as b, but excluding observed 
failures; (d) as c, but with players interacting via a common trait per 
dimension, rather than a power against toughness trait. To compare 
our approach with another established dimensionality estimate in 
this first account, we considered (e) Eklöf et al.'s (2013) niche-based 
method. We asked three questions about our minimum mechanistic 
dimensionality (MMD) estimates; does MMD change: (1) under the 
assumption of alternative one-dimensional modes (dimensionality 
estimate b), compared to the assumption of a single multidimen-
sional mode (dimensionality a)? (2) with observed failures taken into 
account (dimensionality b), or excluded (dimensionality c or d)? (3) 
compared to the measure developed by Eklöf et al.  (2013) (dimen-
sionality a vs. e)?

The systems of inequalities for our four minimum mechanistic 
dimensionality measures a–d were formulated and solved as mixed 
integer linear programming problems with the Gurobi Optimizer 
(Gurobi Optimization & Inc.,  2020). R and Python codes for for-
mulating and solving these are provided (see ‘Data Availability 
Statement’). We computed the fifth dimensionality estimate with 
code available in Eklöf et  al.  (2013). The empirical networks were 

(1)PA,i ≥ TB,i + tA,B,i.

(2)PA,i +MfA,B,i ≤ TB,i +M,

(3)PA,i − mfA,B,i ≥ TB,i + tA,B,i.

(4)
d
∑

i=1

fA,B,i ≥ 1.

(5)PA,j ≤ TB,j.

(6)PA,j + msA,B,j ≥ TB,j + tA,B,j + m,

(7)PA,j −MsA,B,j ≤ TB,j.

(8)
d
∑

j=1

sA,B,j ≥ 1.
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retrieved from five data sources (Cohen, 2010; Ortega et al., 2017; 
Shizuka & McDonald, 2015; Stanko & Miklisova, 2014; Thompson & 
Townsend, 2004). We provide the network characteristics and ref-
erences, raw data from the five computed dimensionality measures 
for each of the 658 empirical systems, and R code for plotting the 
results (see ‘Data Availability Statement’).

2.4 | Minimum dimensionality of simulated 
networks with known dimensionality

We generated networks where we knew how many dimensions 
contributed to the interaction outcomes, based on Santamaría 
and Rodríguez-Gironés' (2007) ‘barrier’ traits model with dif-
ferences in exploiter–resource performance traits, in this first 
evaluation of our method. We then estimated minimum dimen-
sionality in these networks with our MMD method and that of 
Eklöf et  al.  (2013), testing which method performed better by 
comparing minimum dimensionality estimates with the actual 
number of dimensions involved. We note that a minimum dimen-
sionality method does not estimate the actual dimensionality of 
a network, but only the lower bound required to generate such a 
structure. For simplicity, we generated each simulated network 
with species traits involved either in a single interaction mode, or 
with each trait dimension belonging to an alternative, single-task 
mode. We generated unipartite and bipartite networks, to give 
four scenarios: single-mode unipartite, single-mode bipartite, 
multi-mode unipartite and multi-mode bipartite.

We generated unipartite networks with S = {3, 5, 10, 15, 20 or 25} 
species. This was doubled for bipartite networks, where the number 
of exploiters was chosen randomly from a uniform distribution in the 
range 1 to S − 1, and the remaining species were resources. Each uni- or 
bipartite network had D dimensions, D = {2, 5, 10, 15 or 20}. The S–D 
combinations were chosen in a fully factorial design, giving 30 unique 
combinations. For each combination, we generated 10 replicate net-
works, leading to 300 networks for each of the four scenarios.

Random values for power and toughness traits were drawn in-
dependently from distinct normal distributions of equal variance 
(σ2  =  0.01) for each replicated S–D combination. We set the dis-
tance between the means of the two distributions such that net-
works of size S had a wide range of connectance given the range of 
D (Appendix S1). R codes for simulating these networks and plotting 
results are provided (see ‘Data Availability Statement’).

3  | RESULTS

3.1 | Minimum dimensionality of empirical networks

For the five dimensionality measures we considered, the inclusion of 
alternative interaction modes, forbidden links and a more mechanis-
tic approach describing interaction tasks, consistently increased the 
minimum dimensionality estimate across a wide range of empirical 
networks (Figures 3 and 4).

We frequently estimated higher minimum mechanistic di-
mensionality under the alternative rather than the single mode 

F I G U R E  3   Minimum mechanistic dimensionality estimates from 658 empirical systems. Cell colour indicates frequency of the n systems 
with the corresponding pair of values in our two minimum mechanistic dimensionalities (MMD), that is, number of exploiter–resource trait 
pairs assuming: alternative one-dimensional modes (x-axis; minimal explanation II) and tasks in a single mode (y-axis; minimal explanation 
I). Panels represent: (a) animal dominance in n = 168 unipartite graphs (6–31 individuals); (b) consumption of non-basal species in n = 95 
unipartite food webs (6–57 species; basal species excluded from the original food webs); (c) consumption by consumers exclusively feeding 
on basal species in n = 95 bipartite graphs (11–91 species; same food webs used in panel b); (d) biotic plant pollination in n = 105 bipartite 
graphs (8–114 species); (e) ectoparasitism of small mammals in n = 165 bipartite graphs (8–92 species); and (f) plant seed dispersal in n = 30 
bipartite graphs (6–86 species). Parameter values in the inequalities method: m = −200, M = 200, tA ,B,i = 1, for all pairs of exploiter A with 
resource B, and in any trait pair i
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explanation (Figure  3), especially in systems of non-basal con-
sumption, biotic pollination, ectoparasitism and seed dispersal 
(Figure 3b,d–f). 54% of the empirical systems had higher dimension-
ality if alternative modes were assumed, with only 7% of the systems 
having higher unimodal dimensionality (Figure 4a).

Comparing our minimum multimodal dimensionality with the same 
dimensionality estimate excluding failure inequalities from the system 
of inequalities showed that minimum mechanistic dimensionality was 
higher in 92% of the empirical systems when including failure out-
comes (Figure 4b). In the remaining 8% of empirical systems, both di-
mensionality estimates were equal. With failures excluded, minimum 

dimensionality was always one dimension. In this case, the structure 
of observed successes can be explained unimodally, as exploiters can 
have a single power trait with a greater value than the single toughness 
trait of any resource (in the absence of any inequalities constraining the 
power scores). We further required that exploiters and resources pos-
sess the same trait for power and toughness in the unipartite systems 
of animal dominance and non-basal consumption, instead of the default 
power–toughness trait pair. Thus, the unipartite systems could require 
more than one dimension with failures excluded. Even when modelling 
trait opposition with a common trait per dimension, 79% of the unipar-
tite systems had higher minimum dimensionality with failures included 
rather than excluded (Figure 4b).

In 81% of the empirical systems, our minimum mechanistic di-
mensionality was higher than the dimensionality estimate of Eklöf 
et al. (2013; Figure 4c). We assumed a single mode (minimal explana-
tion I), comparable to the niche approach of Eklöf et al. (2013). Only 
2% of the networks had higher minimum dimensionality under Eklöf 
et al.'s (2013) more phenomenological approach, with no bipartite 
networks among them (Figure 4c). The minimum number of trait pairs 
for the explanation of all outcomes in our approach was (median) 1.5 
times larger than with the more phenomenological dimensionality 
estimate across all networks. Note that since our dimensionality re-
fers to exploiter–resource trait pairs, the actual number of necessary 
traits is double our dimensionality, that is, our approach suggested 
a median of three times more trait axes required for the explanation 
of the observed outcomes.

3.2 | Minimum dimensionality of simulated 
networks with known dimensionality

In simulated networks built with a single mode of multiple tasks, our 
MMD method (also assuming a single mode) typically estimated a 
higher minimum dimensionality—that is, closer to the actual number of 
dimensions involved—than the comparable Eklöf et al. (2013) method 
(Figure 5a,c), particularly in larger networks (Appendix S1). The Eklöf 
et al. (2013) method sometimes erroneously estimated a minimum di-
mensionality which was higher than the actual dimensionality for some 
large, two-dimensional unipartite networks (Figure 5c; Appendix S1).

As Eklöf et  al.  (2013) essentially assumed a single interaction 
mode, applying their approach to theoretical networks with multi-
ple modes is not straightforward. Nevertheless, we experimented 
by using the Eklöf et  al.  (2013) and our method by assuming the 
opposite interaction form than the one used for building the net-
works, to identify any characteristic trend in minimum dimension-
ality estimates when an incorrect assumption is used. Applying 
our MMD assuming multiple modes to networks built with a single 
mode, resulted in higher estimates compared to those assuming a 
single mode (Figure 5a,b). Similarly, when applying our MMD and the 
Eklöf et al. (2013) method, both assuming a single mode, to networks 
built with multiple modes, the minimum dimensionality estimate 
was higher than with our MMD correctly assuming multiple modes 
(Figure 5d,f vs. Figure 5e respectively).

F I G U R E  4   Comparisons of minimum dimensionality 
measures estimated from 658 empirical systems. Violin plots 
show the normalised distributions of the dimensionality ratios 
(see Section 2.3 for details) of: (a) our minimum mechanistic 
dimensionality under minimal explanation II (alternative one-
dimensional modes), to our minimum mechanistic dimensionality 
under minimal explanation I (tasks in a single mode); (b) our 
minimum mechanistic dimensionality under minimal explanation 
II, to the same dimensionality estimate with the failures ignored; 
and (c) our minimum mechanistic dimensionality under minimal 
explanation I, to the comparable dimensionality of Eklöf 
et al. (2013). The raw data are displayed as semi-transparent 
points which, for the same x–y value, are spread regularly among 
the x-axis to avoid overplotting. Dotted horizontal lines mark a 
ratio of one, with values above the line indicating higher minimum 
dimensionality when assuming: alternative modes (a), failures as 
trait-mediated outcomes (b) and a more mechanistic perspective (c)
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4  | DISCUSSION

We introduced a novel method for calculating the minimum num-
ber of traits required to explain all observed interaction outcomes 
of ecological networks more mechanistically, using a general frame-
work applicable to different interaction (network) types, modes, 
tasks and types of traits. Applying this to 658 empirical systems, and 
simulated networks of known dimensionality, we showed that the 
minimum number of traits involved is typically underestimated when 
ignoring any of the three framework features we combined here for 
the first time: (a) alternative interaction modes; (b) trait-mediated 
failure outcomes and (c) a more mechanistic description of interac-
tions broken down to tasks. This underestimation risks omitting im-
portant traits in empirical investigations, and generating less realistic 
theoretical networks at the level of interaction outcomes.

Our minimum mechanistic dimensionality framework can ex-
plicitly incorporate the alternative interaction modes frequently 
observed empirically, for example, alternative feeding modes. In 
previous theoretical trait-based works, an exploiter has to over-
come all barriers or defences of a potential resource to exploit the 
resource (Gilman et  al.,  2012; Santamaría & Rodríguez-Gironés, 
2007). Similarly, in other works adopting a niche approach, a 
niche arises from the intersection of all niche dimension intervals 
(Eklöf et  al.,  2013; Stouffer et  al.,  2006). The interaction mode in 
our framework is equivalent to these two approaches—an exploit-
er's performance must be sufficiently high in all the mode's tasks. 
Generalising to alternative modes, we also showed that minimum 
mechanistic dimensionality was frequently higher under alternative 
modes than under a single mode (Figure 4a). By simulating networks 
of known dimensionality and interaction form, we showed that ap-
plying a method assuming the incorrect interaction form frequently 

increased minimum dimensionality estimates (Figure  5). Thus, we 
suggest that many of the empirical networks we tested may be built 
using fewer modes of multiple tasks, a hypothesis that can be in-
vestigated further in future work. Our framework's generalisation 
to alternative modes can offer a new mechanistic perspective to 
the study of interactions, for example, offering alternative minimal 
explanations for the emergence of intransitive networks (Figure 1), 
or for the emergence of pollination syndromes and floral mimicry 
(Schiestl & Johnson, 2013).

We regarded failures as trait-mediated outcomes of interaction, 
meaning more traits were expected to be involved in the interactions 
(Figure 4b). We found that three to six pairs of opposed traits must 
be involved in several behavioural dominance systems (Figure 3a), 
whereas only a few traits are commonly employed in behavioural 
studies for the explanation of only the successful dominance out-
comes (Chase & Seitz, 2011). For example, in the elephant family 
named ‘AA’ in Archie et al.  (2006), almost all observed dominance 
events were directed towards younger elephants, and the authors 
conclude the system is an age-ordered dominance hierarchy based 
only on the successes, agreeing with the one dimension estimated 
in our failures-excluded analysis (Figure 4b). However, incorporat-
ing failures in our minimum mechanistic dimensionality estimates 
suggests three trait pairs under both minimal explanations, because 
there are several older–younger pairs where no dominance or ag-
gression was observed, that is, failures unaccounted for by Archie 
et al.  (2006). In fact, most elephants dominated not only younger 
members within their matriline but also younger members of two 
specific matrilines (Archie et al., 2006). These two behavioural ten-
dencies are candidates for the two extra dimensions predicted by 
our method, overlooked when ignoring failure outcomes. Again, 
we recommend combining our approach—incorporating interaction 

F I G U R E  5   The minimum dimensionality estimates for simulated networks with known dimensionality. The top row shows networks built 
with one multi-task mode, the bottom row shows networks with multiple, single-task modes. For each value of actual dimensionality (x-axis), 
there are 60 unipartite (circles) and 60 bipartite networks (squares), with all panels on the same row with the same x-value hosting the same 
networks. Symbol colour indicates the frequency that networks had the corresponding pair of actual and minimum dimensionality values. 
Panels show: (a) MMD assuming a single mode with multiple tasks (minimal explanation I); (b) MMD assuming multiple, single-task modes 
(minimal explanation II); (c) Eklöf et al. (2013) method; (d) MMD under minimal explanation I; (e) MMD under minimal explanation II; and  
(f) Eklöf et al. (2013) method. Dotted lines show y = x
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failures with trait-based methods—with system-specific biological 
knowledge, to improve estimates when other approaches per-
form poorly, for example, our MMD can indicate a minimum bound 
for the number of traits that might be represented by phylogeny 
when missing traits may be difficult to ascertain (e.g. Brousseau 
et al., 2018).

We adopted a phenotype rather than a niche space representa-
tion for traits. Studies of interactions commonly use the ‘resource- 
utilisation’ approach to represent the ‘ecological niche’ concept 
(Schoener,  1989). Despite its operational advantage, dimensions 
usually arise more phenomenologically, as in the minimum dimen-
sionality of Eklöf et  al.  (2013). For example, body size is a trait 
with high explanatory power in food webs (Stouffer et  al., 2011). 
However, other traits scaling allometrically with body size are 
mechanistically involved in trophic interactions (Woodward et al., 
2005). Even if taken mechanistically, realised niches commonly 
span a range of the resource gradient, implying two traits per niche 
dimension. For instance, in systems where the maximum prey size 
is limited by a predator's mouth gape, the size range minimum must 
be limited by a second trait, like the predator's inability to handle 
smaller prey. The resource-utilisation approach also excludes ex-
ploiters from the niche space, as it is created by resource trait di-
mensions (Schoener, 1989). Our framework accounts for the traits 
of both interacting players simultaneously; a dimension is simply a 
challenged trait axis in the phenotype space of exploiters and re-
sources, as in Dalla Riva and Stouffer (2016). Thus, our minimum 
dimensionality assuming a single interaction mode was frequently 
higher than the comparable dimensionality of Eklöf et al.'s (2013) 
niche-based approach in empirical networks of unknown dimen-
sionality (Figure  4c). Comparing the two methods on simulated 
networks with known dimensionality confirmed that minimum di-
mensionality can often be underestimated when using this more 
phenomenological, niche-based approach (Figure 5a,c).

In this first account, we assumed two simple and extreme mini-
mal interaction forms, but users can input any number of traits and 
values, in any interaction form. While we presented a deterministic 
version, future versions could incorporate stochasticity (Dalla Riva & 
Stouffer, 2016), for example, more probable successes explained by 
larger power–toughness differences. Further extensions could con-
sider the effects of abundance, and indirect interactions in the estima-
tion of minimum dimensionality. Additionally, we tested our method in 
simulated networks only generated with a ‘barrier’ traits mechanism 
(Santamaría & Rodríguez-Gironés, 2007), but future work can address 
the effect of other mechanisms, such as ‘complementarity’ or ‘mixed’ 
barrier–complementarity traits. Lastly, we assumed that performance 
is independent in the different tasks, that is, a unique trait per task per 
player in our formulation of the inequalities. In reality, several traits 
can contribute to performance in the same task, and the same trait 
can contribute to performance in several tasks (Arnold, 1983). Since 
our aim was a minimum dimensionality measure, we assumed inde-
pendence in task performance, to impose fewer constraints in the lin-
ear inequalities system, allowing the estimation of a lower minimum. 
We expect that trait correlations will increase the minimum number 

of dimensions required to explain a specific network, given the asso-
ciated restrictions on possible trait values.

In conclusion, we have outlined a novel method under a differ-
ent perspective on how interactions occur, for estimating the min-
imum dimensionality of ecological networks. Informed by a more 
accurate minimum dimensionality estimate, future studies can rely 
on network models reproducing community structure more accu-
rately at the interaction outcome level, reducing the risk of omitting 
important traits that are involved in alternative interaction modes, 
only in failure outcomes and mechanistically in tasks. In that way, 
our method, combined with appropriate biological insight and other 
methods, could improve understanding, explanation and prediction 
of community structure and structure-dependent processes.
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