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Abstract
In this scenario of launching Lyft’s ride-scheduling services in Toledo, riders call for rides, and drivers might
answer, earning a ride by paying a commission fee to the company. The problem is that the higher this fee is—and
consequently Lyft’s income—the lower is the number of rides the drivers offer, leading to more dissatisfied riders
(and drivers) who quit more often, hence increasing the costs of acquiring new ones. Thus, the aim was to find
the optimum driver cost that maximises the total net revenue in the first 12 months of operation.

Two settings were applied. First, a fixed ratio of 166 riders per driver was assumed, to comply with the
provided empirical data, with the optimum driver cost estimated computationally and mathematically at $2.33.
Second, a fluctuating ratio around 166:1 was assumed, with simulations and mathematical derivations showing
that dynamic pricing is more profitable than fixed at $2.33. In specific, by regulating the driver cost linearly with
the ratio, extra profit mainly arose when increasing the driver cost by $1 for every 18 fewer riders per driver.

It was also found that this optimum driver cost is the one leading to exact answering of all calls. Any further
decrease would reduce costs from the fewer quitting and replenished drivers, but this would not compensate
for the relatively higher decrease of income from the nevertheless all-answered calls (drivers offering more
rides than requested). Finally, it is shown that the results are robust when drivers quit even less (saving further
replenishment costs), and if the numbers of customers are larger or smaller (still at the 166:1 ratio).
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1. Problem overview
As pricing product managers of Lyft in Toledo, we need
to investigate the launching of the company in one route,
i.e. airport–downtown in either direction. The conven-
tional cost for the rider has been $25, from which the
driver cost has been $6 (paid to Lyft; the rest to the
driver).

Under this {$25,$6} scheme, a driver has been found

to serve around 100 rides per month, while there is 20%
monthly chance to quit. A new driver’s acquisition cost
for Lyft is $500.

A rider needs a lift around once per month, and there
is a 10% monthly base rate of quitting, unless a call
was not answered at least once, thereafter changing the
feeling of the rider, quitting irrevocably with 33% chance
on any subsequent month. A new rider’s acquisition cost
is $10–$20 for the company.

The problem is that under the prevalent {$25,$6}
scheme, only 60% of the riders are answered to their
monthly call. After experimentally changing the scheme
to {$25,$3}, though, 93% of the riders were given a lift.

The aim is to estimate the optimum driver cost per
ride that maximises the company’s total net revenue for
the first 12 months of the company’s operation in Toledo.

2. Thoughts, assumptions, relations

For the openness and reproducibility of the present anal-
yses, it is good to share among us the code developed
when trying out the Toledo problem (downloadable here).

We know that the company will not charge the riders
with more than $25 per ride. We will assume that this

https://creatingvalue.substack.com/p/real-problems-we-tackle-pricing-level
https://sci-dani.com/wp-content/uploads/2023/11/toledoProblem02_code.zip
https://www.sci-dani.com
https://anonfiles.com/ce1fF8Xby8/toledoProblem02_code_zip
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rider cost will not be less than $25 either, since this would
limit our potential for profit. Additionally, we do not have
information relating rider cost to the acquisition rate of
new riders, or the number of rider calls per month. Thus,
we will simply assume a fixed rider cost of $25, allowing
us to focus only on the driver cost.

The answering rate must have increased from 60%
to 93% because drivers were more motivated to give a
lift when experimentally charged $3 per ride, presumably
leading them to offer more than 100 rides per month. An
issue here is that this experiment returned data for only
about the rate of answered calls; that is, we do not have
data about the change in the driver rides per month,
neither how this lower driver cost affected the 20% quit
rate of the drivers. We will then assume an equivalent
percent change in the driver quit rate, i.e. the 55% in-
crease in the answering rate would be accompanied by
a 55% decrease in the driver quit rate, decreasing from
20% to 9% per month when charged from $6 to $3 per
ride, respectively.

For simplicity, we will furthermore assume that the
answering rate is equivalent to the percent of riders
being given a lift in one month, since a rider calls once
per month on average.

The problem and the available empirical data are in
monthly rates, and hence we will work with months as
our unit of time, i.e. in monthly time steps.

Related to time, a question arises about the time
of quitting. With the rationale that drivers and riders
are sensible enough to try out the service for at least
one month before quitting, we can assume that they
can resign by the end of the month. That is, quitting
occurs after all riders made their monthly call, and after
all drivers attempted to make all of their expected rides.
By the end of a month, Lyft can know the number of
quitted customers, and can invest in attracting more of
them.

Related again to time, but also to customer acquisi-
tion and replenishment, there is another question about
the time of paying the customer acquisition cost (CAC),
and the time of acquiring a driver or rider who will be
ready for service. Although paying CAC and acquiring
new customers is supposed to happen in a continuous-
in-time fashion, let’s assume for modelling simplicity and
for monitoring purposes that the payment of CAC occurs
by the end of each month, after customer quitting, and
that new drivers or riders are acquired and ready by the
start of the next month.

A follow-up question, then, is what strategy does the
company adopt to acquire new customers. Does the
company acquire a fixed number of drivers and riders
independently of how many quit? Alternatively, does the
company have a pre-specified strategy of increasing or
keeping steady the numbers of customers, or perhaps
using a more adaptive strategy? The description of the

problem provides us with a clue which will encourage
a simplifying assumption: we were given with the per-
centage of riders with answered calls each month, and
actually for two different driver costs. Consequently, we
have to assume that the company adopts the strategy
of keeping steady the numbers of drivers and riders, or
at least the riders:drivers ratio. If only the riders or the
drivers change, the 60% answer rate would not be valid.
Any provided percentage of answered calls would also
not be usable if the ratio of riders:drivers could change
between months, or between prevalent and experimen-
tal cost for the driver.

In specific, if according to the problem’s description a
driver gives 100 lifts per month, which results to 60% an-
swering rate under the $6 charging rate, then there must
be approximately 166 riders calling per month for each
driver, with the 66 of the riders not being answered (40%).
For the 100 monthly lifts per driver, the 60% would have
been lower (higher) if there had been more (fewer) riders
calling. We hence have to assume a fixed riders:drivers
ratio of 166:1.

Thus, to leave out another dimension of the prob-
lem, for better focusing on our aim of total net revenue
maximisation, we will finally assume that the company’s
strategy is to initially invest to a certain number of drivers
and riders before the start of the first month, and will
thenceforth replenish any quitting customers at the end
of each month, so that their absolute numbers and their
166:1 riders:drivers ratio are preserved at the start of
each month. By solving any model with smaller or larger
absolute numbers of riders and riders, while keeping the
same ratio, we can test whether the results are robust
to the numbers of customers (Section 8).

3. Selecting the type of model

Taking into account the thoughts, assumptions and re-
lations of Section 2, an easy and fast starting point in
modelling the Toledo process would be a simulation
model. A simulation model forces us to explicitly state
and implement all the inner workings of the process,
yet without formal mathematical language. In this ex-
ploratory way, we can straightaway emulate the system,
enquire and validate its behaviour, hence testing our
understanding and plausibility of the rules implemented
in the modelled process.

A second step after working with the simulation model
would be to build its equivalent, mathematical model.
While a simulation run will be a stochastic realisation of
the Toledo process, since drivers and riders have a ran-
dom chance of quitting, a mathematical model can neatly
describe its average behaviour. Thus, we need to analyti-
cally solve the mathematical model only once, in compar-
ison to the simulation model that we have to numerically
solve enough times for estimating its average behaviour.
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Additionally, the mathematical model provides values
continuously for any parameter value, whereas the sim-
ulation model will return results for discrete-valued input.
Finally, the mathematical model can provide explicit and
concise expressions about specific quantities or rela-
tions of interest, deepening our understanding of the
system.

A comparison between the average behaviour of the
simulation model and the solution of the mathematical
model is commonly an additional test of our understand-
ing and implementation of the modelled system, both in
rule-based and in mathematical terms, respectively.

4. Simulation model for fixed ratio
Before describing the steps of the model during each
time step of a simulated month, we have to introduce
the two relations which were assumed on the basis of
the empirical data provided in the problem’s descrip-
tion (Section 4.1). After the description of the simulation
model (Section 4.2), we can inspect its behaviour both in
stochastic runs of the net revenue during the 12-month
period (Section 4.3), and in their 12-month total net rev-
enue for different values of driver cost (Section 4.4).

4.1 Implemented relations
First, we have to establish a relation between the driver
cost per ride and the number of rides per month that a
driver is willing to give (left y-axis of Fig. 1). A simple, lin-
ear relation was assumed, passing exactly through two
pairs of values. Note that only the riders’ 93% answer
rate was given in the description of the experimentally
reduced driver cost of $3, i.e. the monthly number of
provided rides by the drivers was not given. Thus, we
had to derive the monthly number of rides per driver,
since the simulation model required it as input, i.e. the
answer rate was just a consequence. Given the fixed
numbers of D = 100 drivers and R = 16,600 riders that
were assumed for each month, each driver had to pro-
vide 154 rides per month, to obtain an answer rate of
93% of the riders. Note that the 54% increase of the
monthly rides, i.e. from 100 to 154 rides, is close to the
55% increase in the answer rate, i.e. from 60% to 93% of
the riders when reducing the driver cost from $6 to $3.

Second, the driver quit rate was also a linear function
of driver cost per ride (right y-axis of Fig. 1). Again, here,
the driver quit rate was not provided for the experimen-
tally reduced driver cost of $3. As already explained in
one of the assumptions of Section 2, an equivalent to
the answer rate’s percent change in the driver quit rate
was assumed, i.e. the 55% increase in the answering
rate would be accompanied by a 55% decrease in the
driver quit rate, decreasing from 20% to 9% per month
when charged from $6 to $3 per ride, respectively.
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Figure 1. The two assumed linear relations between the company’s
commission fee to a driver per ride and: (left y-axis) the driver’s
monthly number of rides willing to give; and (right y-axis) the driver’s
monthly quit rate. The two pairs of points through which the two lines
pass are real or assumed empirical data from the description of the
problem.

4.2 Model steps
A simulation was run for a given driver cost as the focal
parameter of input. In each simulation, time was simu-
lated in months in a loop, while on each month the same
processes were taking place.

Before the start of the first month, two tasks were
necessary. First, given the driver cost, we had to predict
the number of rides a driver would be able to give in
each month, together with the driver’s quit rate, from the
two linear relations (Fig. 1). Second, we had to record
the company’s CAC of acquiring all the initial drivers and
riders, and register all riders as initially feeling happy
about the service.

After completing these two initialisation tasks, the
simulation model executed for each month the following
steps:

1. Calculate the total number of rides offered by all
drivers, and select randomly that number of riders
whose calls will be answered this month.

2. If a rider’s call was not answered, and the feeling
of the rider was happy, turn the rider’s feeling to
sad.

3. Record the company’s income from the rides and
the driver cost per ride.

4. For each driver and rider, make a binomial test
with probability equal to their quit rate, to find out
who quit.

5. Record the company’s CAC of replenishing all quit-
ted drivers and riders.
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Figure 2. Simulated net revenue when drivers pay $6 (a) or $3 (b)
per ride during the 12-month period. (a) Each driver did 100 rides per
month, resulting in 60% monthly answer rate. (b) Each driver did 154
rides per month, resulting in 93% monthly answer rate. Net revenue
is expressed as a percentage of the company’s cost of acquiring the
fixed numbers of drivers and riders before the start of the first month.
The thinner and darker trajectories are from 100 stochastic runs of
the simulation model, whereas the thicker and brighter curves are the
monthly average. The labels indicate the 100 runs’ mean total (sum
of) net revenue across the 12 months (± the 95% confidence interval).

6. Remove the quitted riders from the feelings list,
and register the new riders as feeling happy about
the company.

7. Record the month’s net revenue, i.e. the income
from the answered calls minus the CAC from the
replenishments.

After finishing the iteration of these steps for all
months sequentially, the total net revenue was calcu-
lated as the sum of net revenue from all months.

4.3 Sample runs
As a first test, the 12-month period was simulated 100
times with the prevalent driver cost of $6 per ride (Fig.
2a). For this driver cost, a driver provided 100 rides per
month, according to the linear relation (Fig. 1). As a
result, 60% of the riders got answered to their monthly
ride, in agreement with the description of the problem.
Note that net revenue is expressed as percentage of the
CAC for acquiring the initial drivers and riders before
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Figure 3. Simulated 12-month total net revenue for different driver
costs. (a) The dashed vertical line indicates the optimum driver cost
for a higher, ¢10 accuracy according to panel (b). (b) The dashed
vertical line indicates the driver cost for the highest, ¢1 accuracy (not
shown). The circled points are the average from 100 simulations, and
the error bars are 95% confidence intervals. The labels indicate the
mean maximum total net revenue at the driver cost given at the bottom
of the vertical line. The solid curve is the mathematically derived
function for the average behaviour of the simulated process (Eq. 1).

launching the service. In that way, we can assess how
much of the initial investment is paid off during the 12-
month period. For the $6 driver cost per ride, the mean
total net revenue was −44.3±0.5% of the initial CAC.

As a second test based on the experimentally de-
creased driver cost of $3, the simulation model predicted
a positive total net revenue of 29.4±0.3% the initial CAC
(Fig. 2b). The documented 93% monthly answer rate
was confirmed from the simulations, with drivers now
offering 154 rides per month.

4.4 Maximum total net revenue
The simulations showed that the relation between the
12-month total net revenue and the driver cost per ride
is hump-shaped (Fig. 3). This shape hence confirmed
the existence of a maximum revenue for a specific driver
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cost.
By running the simulation model 100 times for differ-

ent values of driver cost, the maximum total net revenue
of the 12-month launching of the company in Toledo
was initially located in the $2–$4 range (Fig. 3a). Addi-
tional simulations at the higher accuracy of ¢10 further
identified a maximum total net revenue in the $2.3–$2.5
range (Fig. 3b). A last set of simulations in the latter
range and at ¢1 accuracy, finally located the maximum
revenue when the driver cost per ride was $2.33. This
maximum total net revenue was on average 42.1±0.3%
of the initial CAC.

5. Mathematical model for fixed ratio
The quantity we aimed to maximise was the 12-month
total net revenue Ṅ(c) as a function of driver cost c per
ride. As a 12-month total, Ṅ(c) was the sum of net
revenue Nt(c) from each month t:

Ṅ(c) =
12

∑
t=1

Nt(c). (1)

A monthly net revenue was equal to the Et(c) money
earned minus the Lt(c) money lost during a month t:

Nt(c) = Et(c)−Lt(c). (2)

We will now analyse the different components of
earning and losing (Section 5.1), and especially the
more demanding components of losing which regard
the quitting riders (Section 5.2), and their replenishment
(Section 5.3). Putting back to Eq. 1 all the calculated
components, we will identify the driver cost that leads to
the maximum 12-month total net revenue (Section 5.4).

5.1 Earning and losing
For the money Et(c) earned monthly (Eq. 2), the com-
pany charged the drivers a cost c per ride, for each of
the A(c) answered calls during a month t:

Et(c) = cA(c). (3)

Based on the empirical data given by the problem’s de-
scription, the number of answered calls A(c) was equal
to the number of drivers D times the monthly number
of a(c) rides each driver was willing to give, which was
assumed to be a linear function of the driver cost c (Fig.
1, left y-axis):

A(c) = a(c)D = (δc+ ε)D, (4)

with the intercept ε = 208 monthly rides available when
driver cost is zero, and the slope δ =−18 monthly rides
per extra dollar charged.

Note that as the driver cost c was decreased, more
and more of the R riders’ calls were answered, until all

of them were answered. Thus, for any further decrease
in c, the answered calls remain at the upper boundary
of A(c) = R. Given the fixed numbers of D drivers and
R riders in a month that were assumed, the maximum
driver cost cA that leads exactly all riders to be answered
can be calculated from Eq. 4 by solving for c if A(c) = R:

cA = (
R
D
− ε)/δ . (5)

For the fixed R = 16,600 riders and D = 100 drivers as-
sumed monthly, cA = $2.33 if A(c) = R.

For the money Lt(c) lost monthly in CAC (Eq. 2),
the driver acquisition cost DAC and the rider acquisition
cost RAC were applied to the Qt(c) quitting drivers and
Ut(c) app-uninstalling riders at the end of each month t,
since it was assumed that the company’s strategy was
to merely replace any quitting customers, in order to
keep their numbers fixed by the start of the next month:

Lt(c) = Qt(c)DAC+Ut(c)RAC. (6)

The Qt(c) drivers quitting at the end of month t were
the product of the D drivers’ quit rate q(c). The latter
was again based on the empirical data given by the
problem’s description, assuming to be a linear function
of the driver cost c (Fig. 1, right y-axis):

Qt(c) = q(c)D = (ζ c+η)D, (7)

with the intercept η =−2% of riders quitting when driver
cost is zero, and the slope ζ = 3.6% additional chance
of quitting for every extra dollar charged.

Despite the implausibility of having a negative quit
rate as an intercept, the intended $1–$10 range of stud-
ied driver cost was using only non-negative quit rates,
since the driver cost for a zero quit rate was:

ζ c+η ≤ 0 ⇒ c ≤ −η

ζ
=

2%
3.6%$−1 = $0.56, (8)

below any reasonable charging price under consider-
ation. Nevertheless, any negative quit rate for the drivers
could be better forced to be equal to zero, by re-formulating
Eq. 7 as a piecewise function with the help of Ineq. 8:

Qt(c) =

{
0, if c ≤−η/ζ ,

(ζ c+η)D, if c >−η/ζ .
(9)

5.2 Riders quitting
For the Ut(c) uninstalling riders by the end of month t, it
is convenient to distinguish the two sub-phases which
were implied in the simulation model: (1) the {t,0} start
of the month (pre-calling), with the replenished from the
end of the previous month drivers and riders; and (2)
the {t,1} end of the month (post-calling), with the riders’
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Figure 4. Schematic representation of the fate of the R riders from
month t −1 (first and second row) to month t (third row). Happy riders
are in white background, sad ones in grey. In the first row, the Ht−1,0
happy and St−1,0 sad riders at the {t − 1,0} start of month t − 1 call
for a ride, A(c) of the R riders are answered, leading to a change of
attitude in the Ht−1,0 who did not get a lift by the {t−1,1} end of month.
In the second row, Ut−1(c) happy and sad riders quit before the start
of the next month, and are replenished with happy riders at the start
{t,0} of the next month t. In the third row, the process described in
the first row for the previous month t −1 is repeated for this month t.

feeling about the company’s service possibly changing
from happy to sad, depending on their current feeling
and whether their calls were answered.

Any rider quitting on month t was the product from
the latter {t,1} sub-phase, i.e. of the Ht,1(c) happy and
St,1(c) sad riders after calling occurred, given their re-
spective quit rates uh and us:

Ut(c) = uhHt,1(c)+usSt,1(c), (10)

with uh = 10% < us = 33% of the respective riders.

The numbers of happy and sad riders post-calling
depended on the Ht,0(c) happy and St,0(c) sad riders
pre-calling, from the {t,0} sub-phase of the month t
(Fig. 4, third row). In specific, if we reasonably assume
that a driver answers independently of whether a calling
rider feels happy or sad, the same proportion A(c)/R of
answers must be distributed to the happy and sad riders.
Thus, the Ht,1(c) happy riders post-calling are the happy
ones that their calls were answered:

Ht,1(c) =
A(c)

R
Ht,0(c). (11)

The St,1(c) sad riders post-calling are the sum of the
already sad riders who anyway do not change their
feeling—answered or not—and of the happy ones that

their calls were not answered:

St,1(c) = St,0(c)+(1− A(c)
R

)Ht,0(c)

= St,0(c)+Ht,0(c)−
A(c)

R
Ht,0(c)

= R− A(c)
R

Ht,0(c), (12)

i.e. the sad riders at the end of the month are equal to
all the riders minus the happy riders with answered calls
(Fig. 4, third row). Utilising the fact that the happy and
sad riders at any month phase constitute all the riders
R, i.e. Ht,0(c)+St,0(c) = R, Eq. 12 hence has the helpful
characteristic of depending only on the happy riders at
the start of the month, just like Eq. 11 for the happy
riders.

Plugging the Eqs. 11 and 12, for respectively the
happy and sad riders at the end of a month, back into
Eq. 10 for the number of uninstalling riders, we have:

Ut(c) = uh
A(c)

R
Ht,0(c)+usR−us

A(c)
R

Ht,0(c)

= usR− (us −uh)
A(c)

R
Ht,0(c). (13)

In other words, the Ut(c) uninstalling riders by the end of
month t are expressed as all quitting with the higher rate
us of the sad riders, but in the second term this number
is reduced by taking into account the lower quit rate uh
of the happy riders with answered calls.

5.3 Riders replenished
Having expressed all the Ut(c) uninstalling riders of
month t in terms of only the Ht,0(c) happy riders at the
start of the month, it is now necessary to express Ht,0(c)
in terms of the Ht−1,0(c) happy riders of the previous
month t − 1. This is important because of the transfer
of riders from month to month, as well as of their feel-
ing and their quitting–replenishment dynamics, all of
which must be implemented in the mathematical model
to better mimic the simulation model.

By inspecting the schematic representation of quit-
ting and replenishment in the second and third rows of
Fig. 4, we can mathematically express the Ht,0(c) happy
riders at the start of the month as equal to the Ht−1,1(c)
happy ones from the end of the previous month, plus the
quitting ones from the St−1,1(c) sad which were replaced
by happy:

Ht,0(c) = Ht−1,1(c)+usSt−1,1(c). (14)

The replacement of quitting happy riders by new happy
riders cancels out, and hence does not appear in Eq. 14
which is expressed in terms of riders from the end of the
previous month.
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We can then express the Ht,0(c) riders in terms of
riders from the start of the previous month by plugging
the already derived Eqs. 11 and 12 into Eq. 14:

Ht,0(c) =
A(c)

R
Ht−1,0(c)+us

(
R− A(c)

R
Ht−1,0(c)

)
= usR+(1−us)

A(c)
R

Ht−1,0(c). (15)

Thus, we have the desired Ht,0(c) happy riders to feed
into Eq. 13 for the Ut(c) uninstalling riders, which will
feed Eq. 6 for all the CAC-related losses Lt(c), which will
then feed Eq. 2 for the net revenue of month t, in order
to calculate the total net revenue as the sum across the
12 months in our final target Eq. 1.

The problem here is that we cannot use Eq. 15 in
the total net revenue’s sum of the months, because each
month depends on the previous month in this recursion
Eq. 15. Nevertheless, we can obtain a solution of the
recursion relation because we know its value at the first
month t = 1. In specific, we know that at the start of the
first month, all riders are happy, i.e. H1,0(c) = R. With
this initial condition, we can calculate the solution of Eq.
15, which will provide us with the Ht,0(c) happy riders of
each month without any dependence on Ht−1,0(c):

Ht,0 =
R2

(
usA(c)+MtR−MtA(c)

)
A(c)

(
R+usA(c)−A(c)

) , (16)

with M = (1−us)A(c)/R.

5.4 Maximum total net revenue
We can finally calculate the 12-month total net revenue
with Eq. 1. Note, though, that the number of answered
calls can be at most equal to the number of riders, since
each rider calls once per month, i.e. A(c)≤ R. We have
already derived the maximum driver cost cA for exactly
A(c) = R with Eq. 5. Thus, the final result is a piecewise
Eq. 1 of 12-month total net revenue as a function of
driver cost c, which uses A(c) normally according to Eq.
4 when c ≥ cA, but uses A(c) = R when c < cA.

The average total net revenue from the simulation
model was approximated remarkably well by this func-
tion of the mathematical model (solid line in Fig. 3a,b).
Within the 95% confidence interval of the simulation
model (Fig. 3b), the mathematical model estimated
a maximum total net revenue of 42.3% the initial CAC
under the optimum driver cost of $2.33 per ride (in ¢1
accuracy).

6. Combining the two models’ results

We estimated with both the simulation and the mathe-
matical model that the company will be paid off around
the 42% of its initial investment in CAC after the first 12
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Figure 5. Simulated net revenue when drivers pay the optimum $2.33
per ride during a 36-month period. This driver cost was estimated by
the simulation and the mathematical model as the one maximising
total net revenue. The thinner and darker trajectories are from 100
stochastic runs of the simulation model, whereas the thicker and
brighter curve is the monthly average. The label indicates the 100
runs’ mean total (sum of) net revenue across the 36 months (± the 95%
confidence interval). The black, solid, horizontal line is the estimation
of the average monthly net revenue from the mathematical model.
The dotted vertical line indicates the month when the cumulative net
revenue first exceeded the initial investment in CAC.

months of operation by charging the optimum driver cost
of $2.33 per ride (Fig. 3b). A subsequent question would
consider after how many months all the initial CAC would
be paid off. The numerical and analytical solution of re-
spectively the simulation and the mathematical model for
36 months agreed that the cumulative total net revenue
will first exceed the initial investment to CAC on the 29th

month of operation (Fig. 5). The mathematical model’s
estimation of the average monthly net revenue was equal
to 3.51% of the initial CAC (solid, black, horizontal line in
Fig. 5), within the 95% confidence interval of the simula-
tion model’s temporal average of 3.5±0.01%. By the end
of the 36th month, the total net revenue was estimated
to be around 126±0.5% of the initial CAC.

The simulations showed that the maximum total net
revenue is obtained for the optimum driver cost of $2.33
per ride. The same commission fee was found during the
derivation of the mathematical model when searching
for the maximum driver cost that leads exactly to 100%
of riders being answered to their monthly call (Eq. 5).

Combining these results from the two models, it
seems that if the driver cost drops even further after
attaining a 100% answer rate, all riders are still happy,
quitting with the lower quit rate, but the company has
lower income from the rides. At the same time, though,
there is a further drop in the quit rate of drivers, which
could save the company from driver CAC (right y-axis of
Fig. 1).

Since the maximum total net revenue decreases for
any further decrease of the optimum driver cost (Fig.
3), the loss of income from the drop of driver cost must
have been greater than the saving of CAC from the
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Figure 6. The mathematical model of Eq. 1 for the 12-month total net
revenue as a function of the driver cost c, and of the slope of driver
quit rate ζ . The different curves are for higher slopes ζ of the Eq. 9
between driver quit rate and c, when the line is forced to pass through
the only empirical point of q($6) = 20% (Fig. 1). For steeper slopes of
the relation, the dashed vertical lines indicate the higher driver costs
below of which the driver quit rate was zero. The solid vertical line
indicates the driver cost which resulted to the maximum total revenue
in the mathematical model for any slope ζ . The minimum ζ = 3.6%$−1

of the darkest curve is the one originally used in the simulation and
the mathematical model (right y-axis in Fig. 1).

fewer quitting drivers who all need to be replenished.
Indeed, if the price drops, for example, from $2.33 to $2,
the income from answering all R = 16,600 riders would
decrease:

• from $2.33 × 16,600 answered riders = $38,678,

• to $2 × 16,600 answered riders = $33,200.

At the same time, the cost from the quitting drivers’ $500
CAC would only decrease:

• from $500 × 100 drivers × 0.07 quit rate = $3,500,

• to $500 × 100 drivers × 0.05 quit rate = $2,500.

This is a $5,478 decrease in income while only saving
$1,000 from the fewer quitting drivers’ replenishment.

However, someone could hypothesise that these sav-
ings from the decreasing quit rate of the drivers could
have been higher if a steeper slope had been assumed
between the quit rate and the driver cost (Fig. 1). Per-
haps, under a steeper slope, the savings would have
been greater from fewer drivers quitting, surpassing the
loss of income from the reduced driver cost. By forcing
this relation to pass through the only empirical point of
q($6) = 20% (Eqs. 7 and 9), we can plot the mathemati-
cal model of Eq. 1 for different values of steeper slopes
of this linear function (Fig. 1).

For steeper slopes of the relation between driver quit
rate and driver cost per ride, the maximum total revenue
was still located at the driver cost of $2.33, although the
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Figure 7. Optimum driver cost per ride for any given ratio of rid-
ers:drivers. This linear relation was taken from Eq. 5 for the maximum
driver cost that leads to exactly all riders’ calls to be answered, but
now with a variable R/D ratio, i.e. after relaxing the assumption of a
fixed ratio. The circled point is located at the $2.33 driver cost for the
166 riders per driver ratio used in the simulation and the mathematical
model so far.

maximum total net revenue was higher, as expected
due to the lower and even zero driver CAC (Fig. 6). As
the slope of this relation becomes steeper, the driver
cost below of which the quit rate is zero becomes higher
(dashed vertical lines in Fig. 6). Nevertheless, the
increase in the total revenue is uniform for the ≤ $6
region, such that there is no relocation of the $2.33 driver
cost associated with the revenue’s maximum.

7. Relaxing the fixed ratio assumption

Returning to the evidently important Eq. 5 for the max-
imum driver cost that leads to exactly all riders’ calls
to be answered, we can now relax the assumption of a
fixed riders:drivers ratio, by considering the R/D term as
a variable. Thus, this linear relation essentially provides
a simple kind of dynamic pricing scheme with the opti-
mum driver cost that the company should charge to the
drivers so that exactly all riders’ calls are answered for
any ratio of riders:drivers (Fig. 7). Given the parameter
values of Eq. 5 from Eq. 4, the relation of Fig. 7 tells
us that the driver cost must decrease by $1 for every 18
more riders per driver, so that each driver offers 18 more
rides monthly (slope δ in Eq. 4). This dynamic pricing
scheme can be implemented in the simulation model
(Section 7.1), and extra mathematical derivations can
shed light on the reasons of its efficiency in comparison
to a fixed pricing scheme (Section 7.2).

As long as we charge drivers with the price of $2.33,
each driver will be willing to offer 166 rides monthly, and
all riders will be answered if the ratio is 166:1. If the
ratio becomes larger than 166 riders per driver, then
the company should reduce the driver cost according to
the linear function of Fig. 7, to motivate the drivers to
offer more rides, for serving exactly the proportionally
more numerous riders. Conversely, if the ratio becomes
lower than 166:1, then the company should increase the
driver cost to decrease the offered rides, leading to the
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Figure 8. Running the simulation model when the riders:drivers ratio
is variable, under a fixed driver cost (a), versus a dynamic pricing
scheme (b). The initial CAC were equal to the ones used with the
simulation model so far (Figs. 2 and 3). The driver cost per ride for the
dynamic pricing scheme of panel (b) was obtained from the variable
ratio via the relation of Fig. 7. The thinner and darker trajectories are
from 500 stochastic runs of the simulation model, whereas the thicker
and brighter curves are their monthly average. The labels indicate the
500 runs’ mean total (sum of) net revenue across the 12 months (±
the 95% confidence interval).

maximisation of net revenue by not allowing drivers to
wait idle for long at the route’s two endpoint stands. The
basic idea of this dynamic pricing scheme resembles
the one used by Lyft (Crapis and Sholley, 2020).

7.1 Simulation model
The only change to the simulation model that was needed
for implementing the variable riders:drivers ratio was in
the replenishment of the quitting customers. Instead
of replenishing exactly their numbers for preserving a
fixed ratio, replenishment became a Poisson distributed
random variable with a mean equal to the number of
quitting riders or drivers.

To test the efficiency of this dynamic pricing scheme
of the linear relation in Fig. 7, the simulation model was
run under two pricing schemes while the riders:drivers
ratio was now fluctuating.

Under the first, fixed pricing scheme, the simulations
started with the usual, initial CAC of introducing R =
16,600 riders and D = 100 riders, and the driver cost
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Figure 9. Monthly ratio of riders:drivers and respective net revenue in
the 500 simulation runs corresponding to the two schemes of Fig. 8a,b:
(a) fixed driver cost; and (b) variable driver cost. Tile darkness denotes
the frequency of months with the specific pair of ratio–revenue values.
The bright curves are mathematically derived expectations (Appendix
A).

was fixed at $2.33 which was the optimum for the initial
166:1 ratio (Fig. 8a).

The second, dynamic pricing scheme started sim-
ilarly to the first one, but the optimum driver cost was
changing according to the relation of Fig. 7, following
any change in the ratio at the start of each month (Fig.
8b).

The dynamics of net revenue from 500 runs of each
scheme showed that dynamic pricing led to significantly
higher on average total net revenue than the fixed pricing
scheme (labels in Fig. 8a,b). This average total net
revenue from the dynamic pricing scheme was similar to
the one obtained for the fixed $2.33 driver cost but back
when also the ratio was fixed (Fig. 3b), since the mean
of the random replenishments was around the number
of quitting customers, leading to a variable ratio which
fluctuated around the same ratio of 166 riders per driver.

The lower average of the total net revenue from the
fixed pricing scheme was basically due to its monthly
revenue trajectories which were bounded from above at
around 5% of the initial CAC (Fig. 8a), corresponding
to ratios lower than 166:1 (Fig. 9a). Ratios higher than
166 riders per driver corresponded to lower monthly net
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revenues. On the contrary, dynamic pricing with higher
driver cost for these lower ratios resulted in higher net
revenues than with fixed pricing, although net revenues
for ratios higher than 166:1 were similar (Fig. 9b).

7.2 Mathematical derivations
The underlying reasons for the shape of these two rela-
tions from the fixed and dynamic pricing schemes could
be revealed by deriving mathematically their expecta-
tions shown with the bright curves in Fig. 9a,b (de-
scribed mathematically in Appendix A). For both pricing
schemes under a variable ratio, the fluctuations of the
ratio were mainly driven by the fluctuating number of
drivers (Eq. 17), and not due to the riders whose num-
ber was assumed steady on average and equal to the
initially acquired R (details in Appendix A.1).

Under the fixed pricing scheme (bright curve in Fig.
9a), and for ratios lower than 166:1, the number of an-
swered calls from the proportionally more drivers was
bounded by the relatively stable number of riders, since
the number of offered rides was fixed at 166 per driver
due to the fixed driver cost (Eq. 21). Additionally, all the
riders were happy for any lower ratio, since they were all
answered, hence quitting with the lower rate, resulting
in lower CAC for their replenishment (Eq. 20). Thus,
the slight decrease in the mathematically derived net
revenue for ratio lower than 166 riders per driver was
due to the increasing number of drivers, which led to
more quits and hence replenishments (Eq. 18), although
driver quitting occurred at a fixed rate due to the fixed
driver cost of $2.33. For ratios greater than 166 riders per
driver, the decreasing relationship of net revenue with
the ratio in Fig. 9a was due to the decreasing number of
drivers resulting in lower income due to fewer provided
rides (Eq. 21), but also to higher rider CAC due to more
unanswered and hence sad riders who quitted more
often (Eq. 20), although driver-related CAC was lower
due to the fewer (quitting) drivers.

Under the dynamic pricing scheme (bright curve in
Fig. 9b), there were no different regimes below and
above the 166:1 ratio for a couple of reasons. First,
since the driver cost was taking the maximum value
such that drivers were offering exactly as many rides as
needed, the number of answered calls was on average
equal to the number R of riders (Eq. 25), and the CAC
from the quitting riders was on average the same across
the different ratios because all riders were answered
and happy (Eq. 24). Second, the income from all the
answered calls was lower for a higher ratio, since the
driver cost was lower for the same number R of answered
calls (Fig. 7). We could expect that the dynamic pricing
performs better than fixed pricing also in this higher ratio
region, since higher ratio was associated with fewer
drivers and with lower quit rate due to the associated
lower driver cost, leading to lower CAC. Nevertheless, it

appeared that with the given CAC values per customer,
the lower CAC from driver quitting and replenishment
was surpassed by the lower income from the lower driver
cost, as illustrated in the following.

For example, by focusing on two ratios which are 20
riders per driver below and above the 166:1 ratio, we
can compare the changes in income and driver CAC.
For a ratio of 146 riders per driver, the driver cost was
$3.4, leading to a monthly income of $3.4 × 16,600 riders
= $57,178, and to driver CAC from on average 13 quitting
drivers × $500 = $6,500. For a ratio of 186 riders per
driver, the driver cost was $1.2, leading to an income of
$1.2 × 16,600 riders = $20,289, and to a driver CAC of
3 quitting drivers × $500 = $1,500. Thus, by an increase
in the ratio from 146:1 to 186:1, and consequently by
decreasing the driver cost from $3.4 to $1.2, we lose
$36,889 in income from the rides, while we only save
$5,000 in driver CAC.

We could, of course, implement a more adaptive
dynamic pricing scheme, to increase the net revenue,
especially for the > 166:1 ratios, but this would be out of
scope in this already lengthy report.

8. Final considerations
A final test of the models would consider the effect of
having different absolute numbers of drivers and riders,
while keeping the (average) rider:driver ratio equal to the
desired 166 riders per driver. After solving the models
with lower and larger absolute numbers of customers,
it was found that the average behaviour of the system
was not significantly different, and only the variation
around the average behaviour would be larger for lower
numbers of drivers and riders (results not shown).

References
Crapis, D. and Sholley, C. Dynamic pricing to sustain

marketplace balance, 2020. URL. Accessed: Febru-
ary 02, 2023.

A. Derivations for variable ratio
Any mathematical calculation of monthly net revenue
for our problem had three components: the profit from
the answered calls for rides, the CAC for the replen-
ished drivers, and the CAC for the replenished riders.
Some preliminary analyses about the characteristics of
the variable ratio will be useful (Appendix A.1), before
proceeding to the derivation of the three components
of monthly net revenue for the fixed pricing scheme
(Appendix A.2), and for the dynamic pricing scheme
(Appendix A.3).

https://eng.lyft.com/dynamic-pricing-to-sustain-marketplace-balance-1d23a8d1be90
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A.1 Preliminaries
There are three elements to consider about the fluctuat-
ing ratio, which will help in the derivations.

First, note that since the numbers of replenished
customers were Poisson distributed with a mean equal
to the numbers of quitted customers, the variances of
these Poisson distributed numbers were equal to their
respective means, and the customers are expected to
fluctuate around their initial numbers of R= 16,600 riders
and D = 100 drivers. For the fixed driver cost of $2.33
per ride, each driver offered 166 rides monthly, and all
riders were initially happy since 100 drivers × 166 rides
= 16,600 answered calls, equal to the average number
of riders. This means that 10% of the riders were quitting
on average at the end of the first month (1,660 riders on
average), while 6.5% of the drivers (≈ 7) were quitting on
average, given the fixed driver cost and the associated
linear relation in Eq. 7 (right y-axis in Fig. 1).

Second, returning to the Poisson distributed replen-
ishments, their main implication on the ratio was that its
fluctuations were mainly influenced by the fluctuations
in the numbers of drivers. This can be illustrated by
looking at how the fluctuating denominator or numerator
of the ratio can affect the ratio. On the one hand, any
fluctuation of the replenished drivers within three stan-
dard deviations from its mean, i.e. from the number of
quitted drivers, would change the 166:1 ratio in the limits
of 16,600 riders / [100 drivers ± 3

√
(7 quitted drivers)],

i.e. from 154 to 180 riders per driver. On the other hand,
any equivalent fluctuation of the riders would change
the 166:1 ratio in the limits of [16,600 riders ± 3

√
(1,660

quitted riders)] / 100 drivers, i.e. from 165 to 167 riders
per driver only. Thus, we can assume that the fluctuating
ratio is mainly driven by the fluctuating number of drivers,
while the number of riders remains on average equal to
the initial R = 16,600 riders.

Third, in that way, we can estimate the average num-
ber of drivers at the extreme ratios that appeared in
the simulations. For the lowest ratio rmin ≈ 125 riders
per driver, the drivers Dmin must have been R/Dmin =
rmin ⇒ Dmin = R/rmin ≈ 133 drivers on average; equiva-
lently, for the highest ratio rmax ≈ 225 riders per driver,
the drivers Dmax ≈ 74 drivers. Taking these two pairs of
ratio–drivers values, together with the known pair of the
166:1 ratio corresponding to the number of initial drivers
D = 100, we can build a quadratic equation that passes
exactly through these three points, to predict the vari-
able number of drivers Dv(rv) for any ratio rv in the range
produced by the simulations:

Dv(rv)≈ 0.004r2
v −1.8rv +306.6. (17)

This relation, together with the assumption of steady R
riders and mainly variable Dv(rv) drivers, were confirmed
by plotting the actual numbers and dynamics from the
simulations (not shown).

A.2 Net revenue for variable ratio and fixed cost
Let’s now derive the three components of net revenue
for the fixed pricing scheme: the quitting drivers first,
then the quitting riders, and finally the answered calls.

Given the variable number Dv(rv) of drivers as a func-
tion of the variable rv ratio (Eq. 17), we can calculate the
expected monthly number Qv, f (rv,c = $2.33) of quitted
drivers for any observed value of the variable ratio, given
the fixed driver cost c leading to 6.5% driver quit rate:

Qv, f (rv) = 0.065Dv(rv). (18)

For the number Uv, f (rv) of quitting riders, we can
assume that from the relatively steady number R of
riders all are happy by the end of any month when
the ratio rv ≤ 166, because the call of everyone is an-
swered, and hence they quit with 10% rate, leading to
Uv, f (rv ≤ 166) = 0.1R = 1,660 quitting riders monthly. As
the ratio rv becomes larger than 166 riders per driver,
with each driver offering 166 rides monthly due to the
$2.33 fixed driver cost, not all riders’ calls are answered.
In specific, we can start with the base rate of all R rid-
ers quitting like happy ones, but the ones whose calls
are not answered and were happy since the start of the
month t will quit with the additional chance of sad riders
(33% sad quit rate − 10% happy quit rate = 23%). The
number Sv, f ,t of these newly sad riders can be calculated
from the variable ratio’s excess of riders per driver, times
the number of drivers (given the fixed driver cost and
hence the fixed 166 monthly rides per driver):

Sv, f ,t = (rv −166)Dv(rv), (19)

with rv > 166:1. The contribution of these newly sad
drivers to the quit rate of the so far happy riders will then
be 0.23Sv, f ,t .

Additionally, we have to take into account the ex-
tra riders who were already sad from previous months.
Since their monthly quit rate is 33%, half of the newly
sad riders of a month will quit and be replenished in
approximately two months, while all of them will on
average quit and be replenished in three months. In
specific, since the quit probability for the sad riders is
0.33 ≈ 1/3, the probability of not quitting can be taken
as around 1− 1/3 = 2/3. We can then ask how many
months will pass for a sad rider to have 1/2 probabil-
ity to quit (or in other words, for half of the sad riders
to quit). This can be formulated as (2/3)n = 1/2, and
if we solve for n, we get n = 1.71 months for half of
the sad riders to quit, counting the month they got sad.
This is the median, and the average can be taken from
the expected value of the Geometric distribution with
p = 1/3, i.e. ∑

inf
n=1 np(1− p)n−1 = 1/p = 3 months for all

sad drivers to quit on average. Thus, half of the already
sad riders became sad in the previous month (median),
and the rest became sad on average in the month be-
fore (mean). Given the already derived number Sv, f ,t of
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happy riders who became sad at any month t (Eq. 19),
the already sad riders originate on average from the two
previous months, and are equal to Sv, f ,t−1 = 0.5Sv, f ,t for
the previous month, and Sv, f ,t−2 = 0.5Sv, f ,t for the month
before. In total, then, the sad quitting riders of a month
are Sv, f = Sv, f ,t +Sv, f ,t−1 +Sv, f ,t−2 = 2Sv, f ,t . The contribu-
tion of all Sv, f sad riders can then be added to the so far
happy quitted riders of the month with the use of Eq. 19,
and the number of quitting riders for both ratio regimes
is:

Uv, f (rv) =

{
0.1R, if rv ≤ 166,
0.1R+0.23[2(rv −166)Dv(rv)], if rv > 166.

(20)

Finally, for the number Av, f (rv) of answered calls, we
expect all the R riders’ calls to be answered when rv ≤
166, while fewer riders will be answered as rv becomes
higher than 166 riders per driver, times the number of
drivers, each offering the fixed number of 166 monthly
rides:

Av, f (rv) =

{
R, if rv ≤ 166,
R− (rv −166)Dv(rv), if rv > 166.

(21)

Taking all three components together (Eqs. 18,20,21),
the expected monthly net revenue under the fixed pricing
scheme for a variable ratio rv with a driver cost c is:

Nv, f (rv,c= $2.33)=Av, f (rv)c−Qv, f (rv)DAC−Uv, f (rv)RAC,

(22)

for the fixed driver cost c = $2.33, and the CAC for each
driver (DAC = $500) and each rider (RAC = $15).

A.3 Net revenue for variable ratio and variable cost
Let’s derive the three components of net revenue for
the dynamic pricing scheme in the same order as in
Appendix A.2. In the dynamic pricing scheme, the driver
cost c was not fixed, but it was taking the maximum
value cA such that all riders’ calls were answered under
a variable ratio R/D = R/Dv(rv) = rv, according to Eqs.
5 and 17 (Fig. 7).

Under this scheme, the driver quit rate was addition-
ally changing as a linear function of cA (Eq. 7; right
y-axis of Fig. 1). Thus, the number of quitting drivers
under a variable ratio and driver cost was:

Qv,v(rv,cA) = (ζ cA +η)Dv(rv). (23)

For the number of quitting riders, since at the start of
each month the driver cost cA was adjusted according
to the riders:drivers ratio, such that all riders’ calls will
be answered, all riders were quitting with the happy quit
rate of 10%:

Uv,v(rv) = 0.1R. (24)

Finally, the number Av,v(rv) of answered calls was on
average equal to the riders R, again because all were
answered due to the appropriate driver cost cA:

Av,v(rv) = R. (25)

Taking all three components together (Eqs. 23,24,25),
the expected monthly net revenue under the dynamic
pricing scheme for a variable ratio rv with a shifting opti-
mum driver cost cA is:

Nv,v(rv,cA) = Av,v(rv)cA−Qv,v(rv,cA)DAC−Uv,v(rv)RAC,

(26)

with the same CAC for each driver (DAC = $500) and
each rider (RAC = $15).
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